MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0d Structured version   Visualization version   GIF version

Theorem expge0d 13276
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
reexpcld.1 (𝜑𝐴 ∈ ℝ)
reexpcld.2 (𝜑𝑁 ∈ ℕ0)
expge0d.3 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expge0d (𝜑 → 0 ≤ (𝐴𝑁))

Proof of Theorem expge0d
StepHypRef Expression
1 reexpcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 reexpcld.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 expge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
4 expge0 13146 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
51, 2, 3, 4syl3anc 1491 1 (𝜑 → 0 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   class class class wbr 4841  (class class class)co 6876  cr 10221  0cc0 10222  cle 10362  0cn0 11576  cexp 13110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927  df-seq 13052  df-exp 13111
This theorem is referenced by:  faclbnd  13326  faclbnd6  13335  eftlub  15172  eflegeo  15184  radcnvlem1  24505  abelthlem7  24530  logexprlim  25299  ostth2lem2  25672  eulerpartlemgc  30932  knoppcnlem4  32986  knoppndvlem11  33013  expmordi  38285  xralrple4  40321  stoweidlem1  40949  stoweidlem3  40951  stoweidlem7  40955  stoweidlem45  40993  stirlinglem11  41032  etransclem23  41205  digexp  43188
  Copyright terms: Public domain W3C validator