![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expge0d | Structured version Visualization version GIF version |
Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
reexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
reexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
expge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
expge0d | ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | reexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | expge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | expge0 14060 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 ℝcr 11104 0cc0 11105 ≤ cle 11245 ℕ0cn0 12468 ↑cexp 14023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-exp 14024 |
This theorem is referenced by: expmordi 14128 faclbnd 14246 faclbnd6 14255 eftlub 16048 eflegeo 16060 radcnvlem1 26254 abelthlem7 26280 logexprlim 27062 ostth2lem2 27471 eulerpartlemgc 33816 knoppcnlem4 35828 knoppndvlem11 35854 aks4d1p1p2 41394 aks4d1p1p7 41398 2ap1caineq 41420 fltnltalem 41859 xralrple4 44534 stoweidlem1 45168 stoweidlem3 45170 stoweidlem7 45174 stoweidlem45 45212 stirlinglem11 45251 etransclem23 45424 digexp 47447 |
Copyright terms: Public domain | W3C validator |