| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > faccl | Structured version Visualization version GIF version | ||
| Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
| Ref | Expression |
|---|---|
| faccl | ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . 3 ⊢ (𝑗 = 0 → (!‘𝑗) = (!‘0)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ)) |
| 3 | fveq2 6858 | . . 3 ⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ)) |
| 5 | fveq2 6858 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1))) | |
| 6 | 5 | eleq1d 2813 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ)) |
| 7 | fveq2 6858 | . . 3 ⊢ (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁)) | |
| 8 | 7 | eleq1d 2813 | . 2 ⊢ (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ)) |
| 9 | fac0 14241 | . . 3 ⊢ (!‘0) = 1 | |
| 10 | 1nn 12197 | . . 3 ⊢ 1 ∈ ℕ | |
| 11 | 9, 10 | eqeltri 2824 | . 2 ⊢ (!‘0) ∈ ℕ |
| 12 | facp1 14243 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) | |
| 13 | 12 | adantl 481 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
| 14 | nn0p1nn 12481 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ) | |
| 15 | nnmulcl 12210 | . . . . 5 ⊢ (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) | |
| 16 | 14, 15 | sylan2 593 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) |
| 17 | 13, 16 | eqeltrd 2828 | . . 3 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ) |
| 18 | 17 | expcom 413 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ)) |
| 19 | 2, 4, 6, 8, 11, 18 | nn0ind 12629 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ℕcn 12186 ℕ0cn0 12442 !cfa 14238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-fac 14239 |
| This theorem is referenced by: faccld 14249 facne0 14251 facdiv 14252 facndiv 14253 facwordi 14254 faclbnd 14255 faclbnd2 14256 faclbnd3 14257 faclbnd4lem1 14258 faclbnd5 14263 faclbnd6 14264 facubnd 14265 facavg 14266 bcrpcl 14273 bcn0 14275 bcm1k 14280 bcval5 14283 permnn 14291 4bc2eq6 14294 fallfacfac 16011 eftcl 16039 reeftcl 16040 eftabs 16041 ef0lem 16044 ege2le3 16056 efcj 16058 efaddlem 16059 effsumlt 16079 eflegeo 16089 ef01bndlem 16152 eirrlem 16172 prmfac1 16690 pcfac 16870 prmunb 16885 aaliou3lem7 26257 aaliou3lem9 26258 advlogexp 26564 wilth 26981 logfacrlim 27135 logexprlim 27136 bcmono 27188 vmadivsum 27393 subfacval2 35174 subfaclim 35175 subfacval3 35176 bcprod 35725 faclim2 35735 lcmineqlem18 42034 facp2 42131 bcccl 44328 bcc0 44329 bccp1k 44330 binomcxplemwb 44337 dvnxpaek 45940 wallispi2lem2 46070 stirlinglem2 46073 stirlinglem3 46074 stirlinglem4 46075 stirlinglem13 46084 stirlinglem14 46085 stirlinglem15 46086 stirlingr 46088 pgrple2abl 48353 |
| Copyright terms: Public domain | W3C validator |