Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > faccl | Structured version Visualization version GIF version |
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
Ref | Expression |
---|---|
faccl | ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝑗 = 0 → (!‘𝑗) = (!‘0)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ)) |
3 | fveq2 6756 | . . 3 ⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ)) |
5 | fveq2 6756 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1))) | |
6 | 5 | eleq1d 2823 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ)) |
7 | fveq2 6756 | . . 3 ⊢ (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁)) | |
8 | 7 | eleq1d 2823 | . 2 ⊢ (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ)) |
9 | fac0 13918 | . . 3 ⊢ (!‘0) = 1 | |
10 | 1nn 11914 | . . 3 ⊢ 1 ∈ ℕ | |
11 | 9, 10 | eqeltri 2835 | . 2 ⊢ (!‘0) ∈ ℕ |
12 | facp1 13920 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) | |
13 | 12 | adantl 481 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
14 | nn0p1nn 12202 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ) | |
15 | nnmulcl 11927 | . . . . 5 ⊢ (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) | |
16 | 14, 15 | sylan2 592 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) |
17 | 13, 16 | eqeltrd 2839 | . . 3 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ) |
18 | 17 | expcom 413 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ)) |
19 | 2, 4, 6, 8, 11, 18 | nn0ind 12345 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℕcn 11903 ℕ0cn0 12163 !cfa 13915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-fac 13916 |
This theorem is referenced by: faccld 13926 facne0 13928 facdiv 13929 facndiv 13930 facwordi 13931 faclbnd 13932 faclbnd2 13933 faclbnd3 13934 faclbnd4lem1 13935 faclbnd5 13940 faclbnd6 13941 facubnd 13942 facavg 13943 bcrpcl 13950 bcn0 13952 bcm1k 13957 bcval5 13960 permnn 13968 4bc2eq6 13971 fallfacfac 15683 eftcl 15711 reeftcl 15712 eftabs 15713 ef0lem 15716 ege2le3 15727 efcj 15729 efaddlem 15730 effsumlt 15748 eflegeo 15758 ef01bndlem 15821 eirrlem 15841 prmfac1 16354 pcfac 16528 prmunb 16543 aaliou3lem7 25414 aaliou3lem9 25415 advlogexp 25715 wilth 26125 logfacrlim 26277 logexprlim 26278 bcmono 26330 vmadivsum 26535 subfacval2 33049 subfaclim 33050 subfacval3 33051 bcprod 33610 faclim2 33620 lcmineqlem18 39982 facp2 40027 fac2xp3 40088 factwoffsmonot 40091 bcccl 41846 bcc0 41847 bccp1k 41848 binomcxplemwb 41855 dvnxpaek 43373 wallispi2lem2 43503 stirlinglem2 43506 stirlinglem3 43507 stirlinglem4 43508 stirlinglem13 43517 stirlinglem14 43518 stirlinglem15 43519 stirlingr 43521 pgrple2abl 45589 |
Copyright terms: Public domain | W3C validator |