MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faccl Structured version   Visualization version   GIF version

Theorem faccl 13639
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
Assertion
Ref Expression
faccl (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)

Proof of Theorem faccl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . 3 (𝑗 = 0 → (!‘𝑗) = (!‘0))
21eleq1d 2874 . 2 (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ))
3 fveq2 6645 . . 3 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
43eleq1d 2874 . 2 (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ))
5 fveq2 6645 . . 3 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
65eleq1d 2874 . 2 (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ))
7 fveq2 6645 . . 3 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
87eleq1d 2874 . 2 (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ))
9 fac0 13632 . . 3 (!‘0) = 1
10 1nn 11636 . . 3 1 ∈ ℕ
119, 10eqeltri 2886 . 2 (!‘0) ∈ ℕ
12 facp1 13634 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
1312adantl 485 . . . 4 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
14 nn0p1nn 11924 . . . . 5 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
15 nnmulcl 11649 . . . . 5 (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ)
1614, 15sylan2 595 . . . 4 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ)
1713, 16eqeltrd 2890 . . 3 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ)
1817expcom 417 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ))
192, 4, 6, 8, 11, 18nn0ind 12065 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11625  0cn0 11885  !cfa 13629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-fac 13630
This theorem is referenced by:  faccld  13640  facne0  13642  facdiv  13643  facndiv  13644  facwordi  13645  faclbnd  13646  faclbnd2  13647  faclbnd3  13648  faclbnd4lem1  13649  faclbnd5  13654  faclbnd6  13655  facubnd  13656  facavg  13657  bcrpcl  13664  bcn0  13666  bcm1k  13671  bcval5  13674  permnn  13682  4bc2eq6  13685  fallfacfac  15391  eftcl  15419  reeftcl  15420  eftabs  15421  ef0lem  15424  ege2le3  15435  efcj  15437  efaddlem  15438  effsumlt  15456  eflegeo  15466  ef01bndlem  15529  eirrlem  15549  prmfac1  16053  pcfac  16225  prmunb  16240  aaliou3lem7  24945  aaliou3lem9  24946  advlogexp  25246  wilth  25656  logfacrlim  25808  logexprlim  25809  bcmono  25861  vmadivsum  26066  subfacval2  32547  subfaclim  32548  subfacval3  32549  bcprod  33083  faclim2  33093  lcmineqlem18  39334  facp2  39345  fac2xp3  39383  factwoffsmonot  39386  bcccl  41041  bcc0  41042  bccp1k  41043  binomcxplemwb  41050  dvnxpaek  42582  wallispi2lem2  42712  stirlinglem2  42715  stirlinglem3  42716  stirlinglem4  42717  stirlinglem13  42726  stirlinglem14  42727  stirlinglem15  42728  stirlingr  42730  pgrple2abl  44765
  Copyright terms: Public domain W3C validator