| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > faccl | Structured version Visualization version GIF version | ||
| Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
| Ref | Expression |
|---|---|
| faccl | ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑗 = 0 → (!‘𝑗) = (!‘0)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ)) |
| 3 | fveq2 6822 | . . 3 ⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ)) |
| 5 | fveq2 6822 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1))) | |
| 6 | 5 | eleq1d 2813 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ)) |
| 7 | fveq2 6822 | . . 3 ⊢ (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁)) | |
| 8 | 7 | eleq1d 2813 | . 2 ⊢ (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ)) |
| 9 | fac0 14183 | . . 3 ⊢ (!‘0) = 1 | |
| 10 | 1nn 12139 | . . 3 ⊢ 1 ∈ ℕ | |
| 11 | 9, 10 | eqeltri 2824 | . 2 ⊢ (!‘0) ∈ ℕ |
| 12 | facp1 14185 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) | |
| 13 | 12 | adantl 481 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
| 14 | nn0p1nn 12423 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ) | |
| 15 | nnmulcl 12152 | . . . . 5 ⊢ (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) | |
| 16 | 14, 15 | sylan2 593 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) |
| 17 | 13, 16 | eqeltrd 2828 | . . 3 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ) |
| 18 | 17 | expcom 413 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ)) |
| 19 | 2, 4, 6, 8, 11, 18 | nn0ind 12571 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ℕcn 12128 ℕ0cn0 12384 !cfa 14180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-seq 13909 df-fac 14181 |
| This theorem is referenced by: faccld 14191 facne0 14193 facdiv 14194 facndiv 14195 facwordi 14196 faclbnd 14197 faclbnd2 14198 faclbnd3 14199 faclbnd4lem1 14200 faclbnd5 14205 faclbnd6 14206 facubnd 14207 facavg 14208 bcrpcl 14215 bcn0 14217 bcm1k 14222 bcval5 14225 permnn 14233 4bc2eq6 14236 fallfacfac 15952 eftcl 15980 reeftcl 15981 eftabs 15982 ef0lem 15985 ege2le3 15997 efcj 15999 efaddlem 16000 effsumlt 16020 eflegeo 16030 ef01bndlem 16093 eirrlem 16113 prmfac1 16631 pcfac 16811 prmunb 16826 aaliou3lem7 26255 aaliou3lem9 26256 advlogexp 26562 wilth 26979 logfacrlim 27133 logexprlim 27134 bcmono 27186 vmadivsum 27391 subfacval2 35160 subfaclim 35161 subfacval3 35162 bcprod 35711 faclim2 35721 lcmineqlem18 42019 facp2 42116 bcccl 44312 bcc0 44313 bccp1k 44314 binomcxplemwb 44321 dvnxpaek 45923 wallispi2lem2 46053 stirlinglem2 46056 stirlinglem3 46057 stirlinglem4 46058 stirlinglem13 46067 stirlinglem14 46068 stirlinglem15 46069 stirlingr 46071 pgrple2abl 48349 |
| Copyright terms: Public domain | W3C validator |