![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > faccl | Structured version Visualization version GIF version |
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
Ref | Expression |
---|---|
faccl | ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑗 = 0 → (!‘𝑗) = (!‘0)) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ)) |
3 | fveq2 6920 | . . 3 ⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | |
4 | 3 | eleq1d 2829 | . 2 ⊢ (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ)) |
5 | fveq2 6920 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1))) | |
6 | 5 | eleq1d 2829 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ)) |
7 | fveq2 6920 | . . 3 ⊢ (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁)) | |
8 | 7 | eleq1d 2829 | . 2 ⊢ (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ)) |
9 | fac0 14325 | . . 3 ⊢ (!‘0) = 1 | |
10 | 1nn 12304 | . . 3 ⊢ 1 ∈ ℕ | |
11 | 9, 10 | eqeltri 2840 | . 2 ⊢ (!‘0) ∈ ℕ |
12 | facp1 14327 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) | |
13 | 12 | adantl 481 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
14 | nn0p1nn 12592 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ) | |
15 | nnmulcl 12317 | . . . . 5 ⊢ (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) | |
16 | 14, 15 | sylan2 592 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) |
17 | 13, 16 | eqeltrd 2844 | . . 3 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ) |
18 | 17 | expcom 413 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ)) |
19 | 2, 4, 6, 8, 11, 18 | nn0ind 12738 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℕcn 12293 ℕ0cn0 12553 !cfa 14322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-fac 14323 |
This theorem is referenced by: faccld 14333 facne0 14335 facdiv 14336 facndiv 14337 facwordi 14338 faclbnd 14339 faclbnd2 14340 faclbnd3 14341 faclbnd4lem1 14342 faclbnd5 14347 faclbnd6 14348 facubnd 14349 facavg 14350 bcrpcl 14357 bcn0 14359 bcm1k 14364 bcval5 14367 permnn 14375 4bc2eq6 14378 fallfacfac 16093 eftcl 16121 reeftcl 16122 eftabs 16123 ef0lem 16126 ege2le3 16138 efcj 16140 efaddlem 16141 effsumlt 16159 eflegeo 16169 ef01bndlem 16232 eirrlem 16252 prmfac1 16767 pcfac 16946 prmunb 16961 aaliou3lem7 26409 aaliou3lem9 26410 advlogexp 26715 wilth 27132 logfacrlim 27286 logexprlim 27287 bcmono 27339 vmadivsum 27544 subfacval2 35155 subfaclim 35156 subfacval3 35157 bcprod 35700 faclim2 35710 lcmineqlem18 42003 facp2 42100 fac2xp3 42196 factwoffsmonot 42199 bcccl 44308 bcc0 44309 bccp1k 44310 binomcxplemwb 44317 dvnxpaek 45863 wallispi2lem2 45993 stirlinglem2 45996 stirlinglem3 45997 stirlinglem4 45998 stirlinglem13 46007 stirlinglem14 46008 stirlinglem15 46009 stirlingr 46011 pgrple2abl 48090 |
Copyright terms: Public domain | W3C validator |