Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version |
Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
Ref | Expression |
---|---|
nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11980 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | nnne0 12007 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
4 | redivcl 11694 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
5 | 4 | 3expb 1119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℝcr 10870 0cc0 10871 / cdiv 11632 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 |
This theorem is referenced by: nnrecre 12015 nndivred 12027 fldiv2 13581 zmodcl 13611 iexpcyc 13923 sqrlem7 14960 expcnv 15576 ef01bndlem 15893 sin01bnd 15894 cos01bnd 15895 rpnnen2lem2 15924 rpnnen2lem3 15925 rpnnen2lem4 15926 rpnnen2lem9 15931 fldivp1 16598 ovoliunlem1 24666 dyadf 24755 dyadovol 24757 mbfi1fseqlem3 24882 mbfi1fseqlem4 24883 dveflem 25143 plyeq0lem 25371 tangtx 25662 tan4thpi 25671 root1id 25907 root1eq1 25908 root1cj 25909 cxpeq 25910 1cubrlem 25991 atan1 26078 log2tlbnd 26095 log2ublem1 26096 log2ublem2 26097 log2ub 26099 birthdaylem3 26103 birthday 26104 basellem5 26234 basellem8 26237 ppiub 26352 logfac2 26365 dchrptlem1 26412 dchrptlem2 26413 bposlem3 26434 bposlem4 26435 bposlem5 26436 bposlem6 26437 bposlem9 26440 vmadivsum 26630 dchrisum0lem1a 26634 dchrmusum2 26642 dchrvmasum2if 26645 dchrvmasumlem2 26646 dchrvmasumiflem1 26649 dchrvmasumiflem2 26650 dchrisum0re 26661 dchrisum0lem1b 26663 dchrisum0lem1 26664 dchrvmasumlem 26671 rplogsum 26675 mudivsum 26678 selberg2 26699 chpdifbndlem1 26701 selberg3lem1 26705 selbergr 26716 pntlemb 26745 pntlemg 26746 pntlemf 26753 snmlff 33291 sinccvglem 33630 circum 33632 poimirlem29 35806 poimirlem30 35807 poimirlem32 35809 |
Copyright terms: Public domain | W3C validator |