| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version | ||
| Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12200 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | nnne0 12227 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
| 4 | redivcl 11908 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
| 5 | 4 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
| 6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℝcr 11074 0cc0 11075 / cdiv 11842 ℕcn 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 |
| This theorem is referenced by: nnrecre 12235 nndivred 12247 fldiv2 13830 zmodcl 13860 iexpcyc 14179 01sqrexlem7 15221 expcnv 15837 ef01bndlem 16159 sin01bnd 16160 cos01bnd 16161 rpnnen2lem2 16190 rpnnen2lem3 16191 rpnnen2lem4 16192 rpnnen2lem9 16197 fldivp1 16875 ovoliunlem1 25410 dyadf 25499 dyadovol 25501 mbfi1fseqlem3 25625 mbfi1fseqlem4 25626 dveflem 25890 plyeq0lem 26122 tangtx 26421 tan4thpiOLD 26431 root1id 26671 root1eq1 26672 root1cj 26673 cxpeq 26674 1cubrlem 26758 atan1 26845 log2tlbnd 26862 log2ublem1 26863 log2ublem2 26864 log2ub 26866 birthdaylem3 26870 birthday 26871 basellem5 27002 basellem8 27005 ppiub 27122 logfac2 27135 dchrptlem1 27182 dchrptlem2 27183 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem6 27207 bposlem9 27210 vmadivsum 27400 dchrisum0lem1a 27404 dchrmusum2 27412 dchrvmasum2if 27415 dchrvmasumlem2 27416 dchrvmasumiflem1 27419 dchrvmasumiflem2 27420 dchrisum0re 27431 dchrisum0lem1b 27433 dchrisum0lem1 27434 dchrvmasumlem 27441 rplogsum 27445 mudivsum 27448 selberg2 27469 chpdifbndlem1 27471 selberg3lem1 27475 selbergr 27486 pntlemb 27515 pntlemg 27516 pntlemf 27523 snmlff 35323 sinccvglem 35666 circum 35668 poimirlem29 37650 poimirlem30 37651 poimirlem32 37653 |
| Copyright terms: Public domain | W3C validator |