| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version | ||
| Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12193 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | nnne0 12220 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
| 4 | redivcl 11901 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
| 5 | 4 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
| 6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℝcr 11067 0cc0 11068 / cdiv 11835 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 |
| This theorem is referenced by: nnrecre 12228 nndivred 12240 fldiv2 13823 zmodcl 13853 iexpcyc 14172 01sqrexlem7 15214 expcnv 15830 ef01bndlem 16152 sin01bnd 16153 cos01bnd 16154 rpnnen2lem2 16183 rpnnen2lem3 16184 rpnnen2lem4 16185 rpnnen2lem9 16190 fldivp1 16868 ovoliunlem1 25403 dyadf 25492 dyadovol 25494 mbfi1fseqlem3 25618 mbfi1fseqlem4 25619 dveflem 25883 plyeq0lem 26115 tangtx 26414 tan4thpiOLD 26424 root1id 26664 root1eq1 26665 root1cj 26666 cxpeq 26667 1cubrlem 26751 atan1 26838 log2tlbnd 26855 log2ublem1 26856 log2ublem2 26857 log2ub 26859 birthdaylem3 26863 birthday 26864 basellem5 26995 basellem8 26998 ppiub 27115 logfac2 27128 dchrptlem1 27175 dchrptlem2 27176 bposlem3 27197 bposlem4 27198 bposlem5 27199 bposlem6 27200 bposlem9 27203 vmadivsum 27393 dchrisum0lem1a 27397 dchrmusum2 27405 dchrvmasum2if 27408 dchrvmasumlem2 27409 dchrvmasumiflem1 27412 dchrvmasumiflem2 27413 dchrisum0re 27424 dchrisum0lem1b 27426 dchrisum0lem1 27427 dchrvmasumlem 27434 rplogsum 27438 mudivsum 27441 selberg2 27462 chpdifbndlem1 27464 selberg3lem1 27468 selbergr 27479 pntlemb 27508 pntlemg 27509 pntlemf 27516 snmlff 35316 sinccvglem 35659 circum 35661 poimirlem29 37643 poimirlem30 37644 poimirlem32 37646 |
| Copyright terms: Public domain | W3C validator |