Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version |
Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
Ref | Expression |
---|---|
nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11910 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | nnne0 11937 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
4 | redivcl 11624 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
5 | 4 | 3expb 1118 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
6 | 3, 5 | sylan2 592 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℝcr 10801 0cc0 10802 / cdiv 11562 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 |
This theorem is referenced by: nnrecre 11945 nndivred 11957 fldiv2 13509 zmodcl 13539 iexpcyc 13851 sqrlem7 14888 expcnv 15504 ef01bndlem 15821 sin01bnd 15822 cos01bnd 15823 rpnnen2lem2 15852 rpnnen2lem3 15853 rpnnen2lem4 15854 rpnnen2lem9 15859 fldivp1 16526 ovoliunlem1 24571 dyadf 24660 dyadovol 24662 mbfi1fseqlem3 24787 mbfi1fseqlem4 24788 dveflem 25048 plyeq0lem 25276 tangtx 25567 tan4thpi 25576 root1id 25812 root1eq1 25813 root1cj 25814 cxpeq 25815 1cubrlem 25896 atan1 25983 log2tlbnd 26000 log2ublem1 26001 log2ublem2 26002 log2ub 26004 birthdaylem3 26008 birthday 26009 basellem5 26139 basellem8 26142 ppiub 26257 logfac2 26270 dchrptlem1 26317 dchrptlem2 26318 bposlem3 26339 bposlem4 26340 bposlem5 26341 bposlem6 26342 bposlem9 26345 vmadivsum 26535 dchrisum0lem1a 26539 dchrmusum2 26547 dchrvmasum2if 26550 dchrvmasumlem2 26551 dchrvmasumiflem1 26554 dchrvmasumiflem2 26555 dchrisum0re 26566 dchrisum0lem1b 26568 dchrisum0lem1 26569 dchrvmasumlem 26576 rplogsum 26580 mudivsum 26583 selberg2 26604 chpdifbndlem1 26606 selberg3lem1 26610 selbergr 26621 pntlemb 26650 pntlemg 26651 pntlemf 26658 snmlff 33191 sinccvglem 33530 circum 33532 poimirlem29 35733 poimirlem30 35734 poimirlem32 35736 |
Copyright terms: Public domain | W3C validator |