| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version | ||
| Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12171 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | nnne0 12198 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
| 4 | redivcl 11879 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
| 5 | 4 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
| 6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 ℝcr 11045 0cc0 11046 / cdiv 11813 ℕcn 12164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 |
| This theorem is referenced by: nnrecre 12206 nndivred 12218 fldiv2 13801 zmodcl 13831 iexpcyc 14150 01sqrexlem7 15191 expcnv 15807 ef01bndlem 16129 sin01bnd 16130 cos01bnd 16131 rpnnen2lem2 16160 rpnnen2lem3 16161 rpnnen2lem4 16162 rpnnen2lem9 16167 fldivp1 16845 ovoliunlem1 25437 dyadf 25526 dyadovol 25528 mbfi1fseqlem3 25652 mbfi1fseqlem4 25653 dveflem 25917 plyeq0lem 26149 tangtx 26448 tan4thpiOLD 26458 root1id 26698 root1eq1 26699 root1cj 26700 cxpeq 26701 1cubrlem 26785 atan1 26872 log2tlbnd 26889 log2ublem1 26890 log2ublem2 26891 log2ub 26893 birthdaylem3 26897 birthday 26898 basellem5 27029 basellem8 27032 ppiub 27149 logfac2 27162 dchrptlem1 27209 dchrptlem2 27210 bposlem3 27231 bposlem4 27232 bposlem5 27233 bposlem6 27234 bposlem9 27237 vmadivsum 27427 dchrisum0lem1a 27431 dchrmusum2 27439 dchrvmasum2if 27442 dchrvmasumlem2 27443 dchrvmasumiflem1 27446 dchrvmasumiflem2 27447 dchrisum0re 27458 dchrisum0lem1b 27460 dchrisum0lem1 27461 dchrvmasumlem 27468 rplogsum 27472 mudivsum 27475 selberg2 27496 chpdifbndlem1 27498 selberg3lem1 27502 selbergr 27513 pntlemb 27542 pntlemg 27543 pntlemf 27550 snmlff 35310 sinccvglem 35653 circum 35655 poimirlem29 37637 poimirlem30 37638 poimirlem32 37640 |
| Copyright terms: Public domain | W3C validator |