| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version | ||
| Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12132 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | nnne0 12159 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
| 4 | redivcl 11840 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
| 5 | 4 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
| 6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℝcr 11005 0cc0 11006 / cdiv 11774 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 |
| This theorem is referenced by: nnrecre 12167 nndivred 12179 fldiv2 13765 zmodcl 13795 iexpcyc 14114 01sqrexlem7 15155 expcnv 15771 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 rpnnen2lem2 16124 rpnnen2lem3 16125 rpnnen2lem4 16126 rpnnen2lem9 16131 fldivp1 16809 ovoliunlem1 25430 dyadf 25519 dyadovol 25521 mbfi1fseqlem3 25645 mbfi1fseqlem4 25646 dveflem 25910 plyeq0lem 26142 tangtx 26441 tan4thpiOLD 26451 root1id 26691 root1eq1 26692 root1cj 26693 cxpeq 26694 1cubrlem 26778 atan1 26865 log2tlbnd 26882 log2ublem1 26883 log2ublem2 26884 log2ub 26886 birthdaylem3 26890 birthday 26891 basellem5 27022 basellem8 27025 ppiub 27142 logfac2 27155 dchrptlem1 27202 dchrptlem2 27203 bposlem3 27224 bposlem4 27225 bposlem5 27226 bposlem6 27227 bposlem9 27230 vmadivsum 27420 dchrisum0lem1a 27424 dchrmusum2 27432 dchrvmasum2if 27435 dchrvmasumlem2 27436 dchrvmasumiflem1 27439 dchrvmasumiflem2 27440 dchrisum0re 27451 dchrisum0lem1b 27453 dchrisum0lem1 27454 dchrvmasumlem 27461 rplogsum 27465 mudivsum 27468 selberg2 27489 chpdifbndlem1 27491 selberg3lem1 27495 selbergr 27506 pntlemb 27535 pntlemg 27536 pntlemf 27543 snmlff 35373 sinccvglem 35716 circum 35718 poimirlem29 37688 poimirlem30 37689 poimirlem32 37691 |
| Copyright terms: Public domain | W3C validator |