| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version | ||
| Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12135 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | nnne0 12162 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
| 4 | redivcl 11843 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
| 5 | 4 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
| 6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7349 ℝcr 11008 0cc0 11009 / cdiv 11777 ℕcn 12128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 |
| This theorem is referenced by: nnrecre 12170 nndivred 12182 fldiv2 13765 zmodcl 13795 iexpcyc 14114 01sqrexlem7 15155 expcnv 15771 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 rpnnen2lem2 16124 rpnnen2lem3 16125 rpnnen2lem4 16126 rpnnen2lem9 16131 fldivp1 16809 ovoliunlem1 25401 dyadf 25490 dyadovol 25492 mbfi1fseqlem3 25616 mbfi1fseqlem4 25617 dveflem 25881 plyeq0lem 26113 tangtx 26412 tan4thpiOLD 26422 root1id 26662 root1eq1 26663 root1cj 26664 cxpeq 26665 1cubrlem 26749 atan1 26836 log2tlbnd 26853 log2ublem1 26854 log2ublem2 26855 log2ub 26857 birthdaylem3 26861 birthday 26862 basellem5 26993 basellem8 26996 ppiub 27113 logfac2 27126 dchrptlem1 27173 dchrptlem2 27174 bposlem3 27195 bposlem4 27196 bposlem5 27197 bposlem6 27198 bposlem9 27201 vmadivsum 27391 dchrisum0lem1a 27395 dchrmusum2 27403 dchrvmasum2if 27406 dchrvmasumlem2 27407 dchrvmasumiflem1 27410 dchrvmasumiflem2 27411 dchrisum0re 27422 dchrisum0lem1b 27424 dchrisum0lem1 27425 dchrvmasumlem 27432 rplogsum 27436 mudivsum 27439 selberg2 27460 chpdifbndlem1 27462 selberg3lem1 27466 selbergr 27477 pntlemb 27506 pntlemg 27507 pntlemf 27514 snmlff 35322 sinccvglem 35665 circum 35667 poimirlem29 37649 poimirlem30 37650 poimirlem32 37652 |
| Copyright terms: Public domain | W3C validator |