![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndivre | Structured version Visualization version GIF version |
Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
Ref | Expression |
---|---|
nndivre | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12050 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | nnne0 12077 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) |
4 | redivcl 11764 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝐴 / 𝑁) ∈ ℝ) | |
5 | 4 | 3expb 1119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 𝑁 ≠ 0)) → (𝐴 / 𝑁) ∈ ℝ) |
6 | 3, 5 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ≠ wne 2941 (class class class)co 7313 ℝcr 10940 0cc0 10941 / cdiv 11702 ℕcn 12043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 |
This theorem is referenced by: nnrecre 12085 nndivred 12097 fldiv2 13651 zmodcl 13681 iexpcyc 13993 sqrlem7 15029 expcnv 15645 ef01bndlem 15962 sin01bnd 15963 cos01bnd 15964 rpnnen2lem2 15993 rpnnen2lem3 15994 rpnnen2lem4 15995 rpnnen2lem9 16000 fldivp1 16665 ovoliunlem1 24737 dyadf 24826 dyadovol 24828 mbfi1fseqlem3 24953 mbfi1fseqlem4 24954 dveflem 25214 plyeq0lem 25442 tangtx 25733 tan4thpi 25742 root1id 25978 root1eq1 25979 root1cj 25980 cxpeq 25981 1cubrlem 26062 atan1 26149 log2tlbnd 26166 log2ublem1 26167 log2ublem2 26168 log2ub 26170 birthdaylem3 26174 birthday 26175 basellem5 26305 basellem8 26308 ppiub 26423 logfac2 26436 dchrptlem1 26483 dchrptlem2 26484 bposlem3 26505 bposlem4 26506 bposlem5 26507 bposlem6 26508 bposlem9 26511 vmadivsum 26701 dchrisum0lem1a 26705 dchrmusum2 26713 dchrvmasum2if 26716 dchrvmasumlem2 26717 dchrvmasumiflem1 26720 dchrvmasumiflem2 26721 dchrisum0re 26732 dchrisum0lem1b 26734 dchrisum0lem1 26735 dchrvmasumlem 26742 rplogsum 26746 mudivsum 26749 selberg2 26770 chpdifbndlem1 26772 selberg3lem1 26776 selbergr 26787 pntlemb 26816 pntlemg 26817 pntlemf 26824 snmlff 33397 sinccvglem 33736 circum 33738 poimirlem29 35866 poimirlem30 35867 poimirlem32 35869 |
Copyright terms: Public domain | W3C validator |