MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznnfl Structured version   Visualization version   GIF version

Theorem fznnfl 13510
Description: Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
fznnfl (𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))

Proof of Theorem fznnfl
StepHypRef Expression
1 flcl 13443 . . 3 (𝑁 ∈ ℝ → (⌊‘𝑁) ∈ ℤ)
2 fznn 13253 . . 3 ((⌊‘𝑁) ∈ ℤ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ (⌊‘𝑁))))
31, 2syl 17 . 2 (𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ (⌊‘𝑁))))
4 nnz 12272 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
5 flge 13453 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℤ) → (𝐾𝑁𝐾 ≤ (⌊‘𝑁)))
64, 5sylan2 592 . . 3 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ) → (𝐾𝑁𝐾 ≤ (⌊‘𝑁)))
76pm5.32da 578 . 2 (𝑁 ∈ ℝ → ((𝐾 ∈ ℕ ∧ 𝐾𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ (⌊‘𝑁))))
83, 7bitr4d 281 1 (𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803  cle 10941  cn 11903  cz 12249  ...cfz 13168  cfl 13438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fl 13440
This theorem is referenced by:  o1fsum  15453  fsumharmonic  26066  dvdsflf1o  26241  dvdsflsumcom  26242  fsumfldivdiaglem  26243  dchrisum0lem1a  26539  dchrmusum2  26547  dchrvmasumlem1  26548  dchrvmasum2lem  26549  dchrvmasumlem2  26551  dchrisum0fno1  26564  dchrisum0lem1b  26568  dchrisum0lem1  26569  mulog2sumlem2  26588  vmalogdivsum2  26591  2vmadivsumlem  26593  selberglem2  26599  selberg3lem1  26610  selberg4lem1  26613
  Copyright terms: Public domain W3C validator