| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version | ||
| Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| Ref | Expression |
|---|---|
| 4z | ⊢ 4 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12208 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnzi 12496 | 1 ⊢ 4 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 4c4 12182 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-z 12469 |
| This theorem is referenced by: fz0to4untppr 13530 fzo0to42pr 13653 fzo1to4tp 13654 iexpcyc 14114 sqoddm1div8 14150 4bc2eq6 14236 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 4dvdseven 16284 flodddiv4lt 16328 6gcd4e2 16449 6lcm4e12 16527 lcmf2a3a4e12 16558 ge2nprmge4 16612 prm23lt5 16726 1259lem3 17044 ppiub 27142 bclbnd 27218 bposlem6 27227 bposlem9 27230 lgsdir2lem2 27264 m1lgs 27326 2lgsoddprmlem2 27347 chebbnd1lem2 27408 chebbnd1lem3 27409 pntlema 27534 pntlemb 27535 ex-ind-dvds 30441 hgt750lemd 34661 3lexlogpow5ineq5 42163 aks4d1p1p7 42177 aks4d1p1p5 42178 aks4d1p1 42179 flt4lem7 42762 inductionexd 44258 wallispi2lem1 46179 fmtno4prmfac 47682 31prm 47707 mod42tp1mod8 47712 8even 47823 341fppr2 47844 4fppr1 47845 9fppr8 47847 fpprel2 47851 sbgoldbo 47897 nnsum3primesle9 47904 nnsum4primeseven 47910 nnsum4primesevenALTV 47911 tgblthelfgott 47925 gpg5nbgr3star 48191 gpgprismgr4cycllem9 48213 zlmodzxzequa 48607 zlmodzxznm 48608 zlmodzxzequap 48610 zlmodzxzldeplem3 48613 zlmodzxzldep 48615 ldepsnlinclem1 48616 ldepsnlinc 48619 |
| Copyright terms: Public domain | W3C validator |