| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version | ||
| Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| Ref | Expression |
|---|---|
| 4z | ⊢ 4 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12331 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnzi 12624 | 1 ⊢ 4 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 4c4 12305 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-i2m1 11205 ax-1ne0 11206 ax-rrecex 11209 ax-cnre 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-z 12597 |
| This theorem is referenced by: fz0to4untppr 13652 fzo0to42pr 13774 fzo1to4tp 13775 iexpcyc 14228 sqoddm1div8 14264 4bc2eq6 14350 ef01bndlem 16202 sin01bnd 16203 cos01bnd 16204 4dvdseven 16392 flodddiv4lt 16436 6gcd4e2 16557 6lcm4e12 16635 lcmf2a3a4e12 16666 ge2nprmge4 16720 prm23lt5 16834 1259lem3 17152 ppiub 27184 bclbnd 27260 bposlem6 27269 bposlem9 27272 lgsdir2lem2 27306 m1lgs 27368 2lgsoddprmlem2 27389 chebbnd1lem2 27450 chebbnd1lem3 27451 pntlema 27576 pntlemb 27577 ex-ind-dvds 30408 hgt750lemd 34622 3lexlogpow5ineq5 42020 aks4d1p1p7 42034 aks4d1p1p5 42035 aks4d1p1 42036 flt4lem7 42632 inductionexd 44130 wallispi2lem1 46043 fmtno4prmfac 47517 31prm 47542 mod42tp1mod8 47547 8even 47658 341fppr2 47679 4fppr1 47680 9fppr8 47682 fpprel2 47686 sbgoldbo 47732 nnsum3primesle9 47739 nnsum4primeseven 47745 nnsum4primesevenALTV 47746 tgblthelfgott 47760 gpg5nbgr3star 47995 zlmodzxzequa 48371 zlmodzxznm 48372 zlmodzxzequap 48374 zlmodzxzldeplem3 48377 zlmodzxzldep 48379 ldepsnlinclem1 48380 ldepsnlinc 48383 |
| Copyright terms: Public domain | W3C validator |