Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version |
Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
Ref | Expression |
---|---|
4z | ⊢ 4 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 11762 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnzi 12050 | 1 ⊢ 4 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 4c4 11736 ℤcz 12025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-i2m1 10648 ax-1ne0 10649 ax-rrecex 10652 ax-cnre 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-z 12026 |
This theorem is referenced by: fz0to4untppr 13064 fzo0to42pr 13178 fzo1to4tp 13179 iexpcyc 13624 sqoddm1div8 13659 4bc2eq6 13744 ef01bndlem 15590 sin01bnd 15591 cos01bnd 15592 4dvdseven 15779 flodddiv4lt 15821 6gcd4e2 15942 6lcm4e12 16017 lcmf2a3a4e12 16048 ge2nprmge4 16102 prm23lt5 16211 1259lem3 16529 ppiub 25892 bclbnd 25968 bposlem6 25977 bposlem9 25980 lgsdir2lem2 26014 m1lgs 26076 2lgsoddprmlem2 26097 chebbnd1lem2 26158 chebbnd1lem3 26159 pntlema 26284 pntlemb 26285 ex-ind-dvds 28350 hgt750lemd 32151 3lexlogpow5ineq5 39653 aks4d1p1p7 39666 aks4d1p1p5 39667 aks4d1p1 39668 flt4lem7 40016 inductionexd 41259 wallispi2lem1 43107 fmtno4prmfac 44485 31prm 44510 mod42tp1mod8 44515 8even 44626 341fppr2 44647 4fppr1 44648 9fppr8 44650 fpprel2 44654 sbgoldbo 44700 nnsum3primesle9 44707 nnsum4primeseven 44713 nnsum4primesevenALTV 44714 tgblthelfgott 44728 zlmodzxzequa 45298 zlmodzxznm 45299 zlmodzxzequap 45301 zlmodzxzldeplem3 45304 zlmodzxzldep 45306 ldepsnlinclem1 45307 ldepsnlinc 45310 |
Copyright terms: Public domain | W3C validator |