![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version |
Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
Ref | Expression |
---|---|
4z | ⊢ 4 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 12356 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnzi 12648 | 1 ⊢ 4 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 4c4 12330 ℤcz 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-i2m1 11230 ax-1ne0 11231 ax-rrecex 11234 ax-cnre 11235 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-z 12621 |
This theorem is referenced by: fz0to4untppr 13676 fzo0to42pr 13798 fzo1to4tp 13799 iexpcyc 14252 sqoddm1div8 14288 4bc2eq6 14374 ef01bndlem 16226 sin01bnd 16227 cos01bnd 16228 4dvdseven 16416 flodddiv4lt 16460 6gcd4e2 16581 6lcm4e12 16659 lcmf2a3a4e12 16690 ge2nprmge4 16744 prm23lt5 16857 1259lem3 17176 ppiub 27274 bclbnd 27350 bposlem6 27359 bposlem9 27362 lgsdir2lem2 27396 m1lgs 27458 2lgsoddprmlem2 27479 chebbnd1lem2 27540 chebbnd1lem3 27541 pntlema 27666 pntlemb 27667 ex-ind-dvds 30506 hgt750lemd 34656 3lexlogpow5ineq5 42056 aks4d1p1p7 42070 aks4d1p1p5 42071 aks4d1p1 42072 flt4lem7 42662 inductionexd 44161 wallispi2lem1 46055 fmtno4prmfac 47525 31prm 47550 mod42tp1mod8 47555 8even 47666 341fppr2 47687 4fppr1 47688 9fppr8 47690 fpprel2 47694 sbgoldbo 47740 nnsum3primesle9 47747 nnsum4primeseven 47753 nnsum4primesevenALTV 47754 tgblthelfgott 47768 gpg5nbgr3star 48003 zlmodzxzequa 48380 zlmodzxznm 48381 zlmodzxzequap 48383 zlmodzxzldeplem3 48386 zlmodzxzldep 48388 ldepsnlinclem1 48389 ldepsnlinc 48392 |
Copyright terms: Public domain | W3C validator |