| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version | ||
| Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| Ref | Expression |
|---|---|
| 4z | ⊢ 4 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12245 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnzi 12533 | 1 ⊢ 4 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 4c4 12219 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-z 12506 |
| This theorem is referenced by: fz0to4untppr 13567 fzo0to42pr 13690 fzo1to4tp 13691 iexpcyc 14148 sqoddm1div8 14184 4bc2eq6 14270 ef01bndlem 16128 sin01bnd 16129 cos01bnd 16130 4dvdseven 16319 flodddiv4lt 16363 6gcd4e2 16484 6lcm4e12 16562 lcmf2a3a4e12 16593 ge2nprmge4 16647 prm23lt5 16761 1259lem3 17079 ppiub 27148 bclbnd 27224 bposlem6 27233 bposlem9 27236 lgsdir2lem2 27270 m1lgs 27332 2lgsoddprmlem2 27353 chebbnd1lem2 27414 chebbnd1lem3 27415 pntlema 27540 pntlemb 27541 ex-ind-dvds 30440 hgt750lemd 34632 3lexlogpow5ineq5 42041 aks4d1p1p7 42055 aks4d1p1p5 42056 aks4d1p1 42057 flt4lem7 42640 inductionexd 44137 wallispi2lem1 46062 fmtno4prmfac 47566 31prm 47591 mod42tp1mod8 47596 8even 47707 341fppr2 47728 4fppr1 47729 9fppr8 47731 fpprel2 47735 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 tgblthelfgott 47809 gpg5nbgr3star 48065 gpgprismgr4cycllem9 48086 zlmodzxzequa 48478 zlmodzxznm 48479 zlmodzxzequap 48481 zlmodzxzldeplem3 48484 zlmodzxzldep 48486 ldepsnlinclem1 48487 ldepsnlinc 48490 |
| Copyright terms: Public domain | W3C validator |