| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version | ||
| Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| Ref | Expression |
|---|---|
| 4z | ⊢ 4 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12270 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnzi 12563 | 1 ⊢ 4 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 4c4 12244 ℤcz 12535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-i2m1 11142 ax-1ne0 11143 ax-rrecex 11146 ax-cnre 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-z 12536 |
| This theorem is referenced by: fz0to4untppr 13597 fzo0to42pr 13720 fzo1to4tp 13721 iexpcyc 14178 sqoddm1div8 14214 4bc2eq6 14300 ef01bndlem 16158 sin01bnd 16159 cos01bnd 16160 4dvdseven 16349 flodddiv4lt 16393 6gcd4e2 16514 6lcm4e12 16592 lcmf2a3a4e12 16623 ge2nprmge4 16677 prm23lt5 16791 1259lem3 17109 ppiub 27121 bclbnd 27197 bposlem6 27206 bposlem9 27209 lgsdir2lem2 27243 m1lgs 27305 2lgsoddprmlem2 27326 chebbnd1lem2 27387 chebbnd1lem3 27388 pntlema 27513 pntlemb 27514 ex-ind-dvds 30396 hgt750lemd 34645 3lexlogpow5ineq5 42043 aks4d1p1p7 42057 aks4d1p1p5 42058 aks4d1p1 42059 flt4lem7 42640 inductionexd 44137 wallispi2lem1 46062 fmtno4prmfac 47563 31prm 47588 mod42tp1mod8 47593 8even 47704 341fppr2 47725 4fppr1 47726 9fppr8 47728 fpprel2 47732 sbgoldbo 47778 nnsum3primesle9 47785 nnsum4primeseven 47791 nnsum4primesevenALTV 47792 tgblthelfgott 47806 gpg5nbgr3star 48062 gpgprismgr4cycllem9 48083 zlmodzxzequa 48475 zlmodzxznm 48476 zlmodzxzequap 48478 zlmodzxzldeplem3 48481 zlmodzxzldep 48483 ldepsnlinclem1 48484 ldepsnlinc 48487 |
| Copyright terms: Public domain | W3C validator |