Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version |
Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
Ref | Expression |
---|---|
4z | ⊢ 4 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 12056 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnzi 12344 | 1 ⊢ 4 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 4c4 12030 ℤcz 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-z 12320 |
This theorem is referenced by: fz0to4untppr 13359 fzo0to42pr 13474 fzo1to4tp 13475 iexpcyc 13923 sqoddm1div8 13958 4bc2eq6 14043 ef01bndlem 15893 sin01bnd 15894 cos01bnd 15895 4dvdseven 16082 flodddiv4lt 16124 6gcd4e2 16246 6lcm4e12 16321 lcmf2a3a4e12 16352 ge2nprmge4 16406 prm23lt5 16515 1259lem3 16834 ppiub 26352 bclbnd 26428 bposlem6 26437 bposlem9 26440 lgsdir2lem2 26474 m1lgs 26536 2lgsoddprmlem2 26557 chebbnd1lem2 26618 chebbnd1lem3 26619 pntlema 26744 pntlemb 26745 ex-ind-dvds 28825 hgt750lemd 32628 3lexlogpow5ineq5 40068 aks4d1p1p7 40082 aks4d1p1p5 40083 aks4d1p1 40084 flt4lem7 40496 inductionexd 41765 wallispi2lem1 43612 fmtno4prmfac 45024 31prm 45049 mod42tp1mod8 45054 8even 45165 341fppr2 45186 4fppr1 45187 9fppr8 45189 fpprel2 45193 sbgoldbo 45239 nnsum3primesle9 45246 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 tgblthelfgott 45267 zlmodzxzequa 45837 zlmodzxznm 45838 zlmodzxzequap 45840 zlmodzxzldeplem3 45843 zlmodzxzldep 45845 ldepsnlinclem1 45846 ldepsnlinc 45849 |
Copyright terms: Public domain | W3C validator |