Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version |
Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
Ref | Expression |
---|---|
4z | ⊢ 4 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 11986 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnzi 12274 | 1 ⊢ 4 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 4c4 11960 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-z 12250 |
This theorem is referenced by: fz0to4untppr 13288 fzo0to42pr 13402 fzo1to4tp 13403 iexpcyc 13851 sqoddm1div8 13886 4bc2eq6 13971 ef01bndlem 15821 sin01bnd 15822 cos01bnd 15823 4dvdseven 16010 flodddiv4lt 16052 6gcd4e2 16174 6lcm4e12 16249 lcmf2a3a4e12 16280 ge2nprmge4 16334 prm23lt5 16443 1259lem3 16762 ppiub 26257 bclbnd 26333 bposlem6 26342 bposlem9 26345 lgsdir2lem2 26379 m1lgs 26441 2lgsoddprmlem2 26462 chebbnd1lem2 26523 chebbnd1lem3 26524 pntlema 26649 pntlemb 26650 ex-ind-dvds 28726 hgt750lemd 32528 3lexlogpow5ineq5 39996 aks4d1p1p7 40010 aks4d1p1p5 40011 aks4d1p1 40012 flt4lem7 40412 inductionexd 41654 wallispi2lem1 43502 fmtno4prmfac 44912 31prm 44937 mod42tp1mod8 44942 8even 45053 341fppr2 45074 4fppr1 45075 9fppr8 45077 fpprel2 45081 sbgoldbo 45127 nnsum3primesle9 45134 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 tgblthelfgott 45155 zlmodzxzequa 45725 zlmodzxznm 45726 zlmodzxzequap 45728 zlmodzxzldeplem3 45731 zlmodzxzldep 45733 ldepsnlinclem1 45734 ldepsnlinc 45737 |
Copyright terms: Public domain | W3C validator |