| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4z | Structured version Visualization version GIF version | ||
| Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| Ref | Expression |
|---|---|
| 4z | ⊢ 4 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12211 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnzi 12499 | 1 ⊢ 4 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 4c4 12185 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-z 12472 |
| This theorem is referenced by: fz0to4untppr 13533 fzo0to42pr 13656 fzo1to4tp 13657 iexpcyc 14114 sqoddm1div8 14150 4bc2eq6 14236 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 4dvdseven 16284 flodddiv4lt 16328 6gcd4e2 16449 6lcm4e12 16527 lcmf2a3a4e12 16558 ge2nprmge4 16612 prm23lt5 16726 1259lem3 17044 ppiub 27113 bclbnd 27189 bposlem6 27198 bposlem9 27201 lgsdir2lem2 27235 m1lgs 27297 2lgsoddprmlem2 27318 chebbnd1lem2 27379 chebbnd1lem3 27380 pntlema 27505 pntlemb 27506 ex-ind-dvds 30405 hgt750lemd 34622 3lexlogpow5ineq5 42043 aks4d1p1p7 42057 aks4d1p1p5 42058 aks4d1p1 42059 flt4lem7 42642 inductionexd 44138 wallispi2lem1 46062 fmtno4prmfac 47566 31prm 47591 mod42tp1mod8 47596 8even 47707 341fppr2 47728 4fppr1 47729 9fppr8 47731 fpprel2 47735 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 tgblthelfgott 47809 gpg5nbgr3star 48075 gpgprismgr4cycllem9 48097 zlmodzxzequa 48491 zlmodzxznm 48492 zlmodzxzequap 48494 zlmodzxzldeplem3 48497 zlmodzxzldep 48499 ldepsnlinclem1 48500 ldepsnlinc 48503 |
| Copyright terms: Public domain | W3C validator |