| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoshftral | Structured version Visualization version GIF version | ||
| Description: Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral 13632. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| Ref | Expression |
|---|---|
| fzoshftral | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13677 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | 2 | raleqdv 3305 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑)) |
| 4 | peano2zm 12635 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 5 | fzshftral 13632 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | |
| 6 | 4, 5 | syl3an2 1164 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) |
| 7 | zaddcl 12632 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ) | |
| 8 | 7 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ) |
| 9 | fzoval 13677 | . . . . 5 ⊢ ((𝑁 + 𝐾) ∈ ℤ → ((𝑀 + 𝐾)..^(𝑁 + 𝐾)) = ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1))) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)..^(𝑁 + 𝐾)) = ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1))) |
| 11 | zcn 12593 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 13 | zcn 12593 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ) |
| 15 | 1cnd 11230 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 1 ∈ ℂ) | |
| 16 | 12, 14, 15 | addsubd 11615 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) − 1) = ((𝑁 − 1) + 𝐾)) |
| 17 | 16 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) − 1) = ((𝑁 − 1) + 𝐾)) |
| 18 | 17 | oveq2d 7421 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)) = ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))) |
| 19 | 10, 18 | eqtr2d 2771 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾)) = ((𝑀 + 𝐾)..^(𝑁 + 𝐾))) |
| 20 | 19 | raleqdv 3305 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) |
| 21 | 3, 6, 20 | 3bitrd 305 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 ℤcz 12588 ...cfz 13524 ..^cfzo 13671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 |
| This theorem is referenced by: swrdspsleq 14683 |
| Copyright terms: Public domain | W3C validator |