![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgninv | Structured version Visualization version GIF version |
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgninv.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgninv.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
zrhpsgninv.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
zrhpsgninv | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . . 5 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | zrhpsgninv.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | zrhpsgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
4 | 1, 2, 3 | psgninv 21536 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑆‘◡𝐹) = (𝑆‘𝐹)) |
5 | 4 | 3adant1 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑆‘◡𝐹) = (𝑆‘𝐹)) |
6 | 5 | fveq2d 6900 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑌‘(𝑆‘◡𝐹)) = (𝑌‘(𝑆‘𝐹))) |
7 | eqid 2725 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
8 | 1, 2, 7 | psgnghm2 21535 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
9 | eqid 2725 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
10 | 3, 9 | ghmf 19188 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
12 | 11 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
13 | eqid 2725 | . . . . . 6 ⊢ (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁)) | |
14 | 1, 3, 13 | symginv 19374 | . . . . 5 ⊢ (𝐹 ∈ 𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = ◡𝐹) |
15 | 14 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = ◡𝐹) |
16 | 1 | symggrp 19372 | . . . . . 6 ⊢ (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp) |
17 | 16 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (SymGrp‘𝑁) ∈ Grp) |
18 | simp3 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝐹 ∈ 𝑃) | |
19 | 3, 13 | grpinvcl 18957 | . . . . 5 ⊢ (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃) |
20 | 17, 18, 19 | syl2anc 582 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃) |
21 | 15, 20 | eqeltrrd 2826 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ◡𝐹 ∈ 𝑃) |
22 | fvco3 6996 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ◡𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = (𝑌‘(𝑆‘◡𝐹))) | |
23 | 12, 21, 22 | syl2anc 582 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = (𝑌‘(𝑆‘◡𝐹))) |
24 | fvco3 6996 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
25 | 12, 18, 24 | syl2anc 582 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
26 | 6, 23, 25 | 3eqtr4d 2775 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cpr 4632 ◡ccnv 5677 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 1c1 11146 -cneg 11482 Basecbs 17188 ↾s cress 17217 Grpcgrp 18903 invgcminusg 18904 GrpHom cghm 19180 SymGrpcsymg 19338 pmSgncpsgn 19461 mulGrpcmgp 20091 Ringcrg 20190 ℂfldccnfld 21301 ℤRHomczrh 21447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-addf 11224 ax-mulf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-xnn0 12583 df-z 12597 df-dec 12716 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-seq 14008 df-exp 14068 df-hash 14331 df-word 14506 df-lsw 14554 df-concat 14562 df-s1 14587 df-substr 14632 df-pfx 14662 df-splice 14741 df-reverse 14750 df-s2 14840 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-starv 17256 df-tset 17260 df-ple 17261 df-ds 17263 df-unif 17264 df-0g 17431 df-gsum 17432 df-mre 17574 df-mrc 17575 df-acs 17577 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-mhm 18748 df-submnd 18749 df-efmnd 18834 df-grp 18906 df-minusg 18907 df-subg 19091 df-ghm 19181 df-gim 19227 df-oppg 19314 df-symg 19339 df-pmtr 19414 df-psgn 19463 df-cmn 19754 df-abl 19755 df-mgp 20092 df-rng 20110 df-ur 20139 df-ring 20192 df-cring 20193 df-oppr 20290 df-dvdsr 20313 df-unit 20314 df-invr 20344 df-dvr 20357 df-drng 20643 df-cnfld 21302 |
This theorem is referenced by: mdetleib2 22539 |
Copyright terms: Public domain | W3C validator |