MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgninv Structured version   Visualization version   GIF version

Theorem zrhpsgninv 20142
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgninv.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgninv.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgninv.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
zrhpsgninv ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))

Proof of Theorem zrhpsgninv
StepHypRef Expression
1 eqid 2771 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgninv.s . . . . 5 𝑆 = (pmSgn‘𝑁)
3 zrhpsgninv.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
41, 2, 3psgninv 20139 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
543adant1 1124 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
65fveq2d 6334 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑌‘(𝑆𝐹)) = (𝑌‘(𝑆𝐹)))
7 eqid 2771 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
81, 2, 7psgnghm2 20138 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
9 eqid 2771 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
103, 9ghmf 17868 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
118, 10syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
12113ad2ant2 1128 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2771 . . . . . 6 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
141, 3, 13symginv 18025 . . . . 5 (𝐹𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
15143ad2ant3 1129 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
161symggrp 18023 . . . . . 6 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
17163ad2ant2 1128 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (SymGrp‘𝑁) ∈ Grp)
18 simp3 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
193, 13grpinvcl 17671 . . . . 5 (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2017, 18, 19syl2anc 573 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2115, 20eqeltrrd 2851 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
22 fvco3 6416 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2312, 21, 22syl2anc 573 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
24 fvco3 6416 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2512, 18, 24syl2anc 573 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
266, 23, 253eqtr4d 2815 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  {cpr 4318  ccnv 5248  ccom 5253  wf 6025  cfv 6029  (class class class)co 6792  Fincfn 8109  1c1 10139  -cneg 10469  Basecbs 16060  s cress 16061  Grpcgrp 17626  invgcminusg 17627   GrpHom cghm 17861  SymGrpcsymg 18000  pmSgncpsgn 18112  mulGrpcmgp 18693  Ringcrg 18751  fldccnfld 19957  ℤRHomczrh 20059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-xor 1613  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-ot 4325  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11496  df-xnn0 11567  df-z 11581  df-dec 11697  df-uz 11890  df-rp 12032  df-fz 12530  df-fzo 12670  df-seq 13005  df-exp 13064  df-hash 13318  df-word 13491  df-lsw 13492  df-concat 13493  df-s1 13494  df-substr 13495  df-splice 13496  df-reverse 13497  df-s2 13798  df-struct 16062  df-ndx 16063  df-slot 16064  df-base 16066  df-sets 16067  df-ress 16068  df-plusg 16158  df-mulr 16159  df-starv 16160  df-tset 16164  df-ple 16165  df-ds 16168  df-unif 16169  df-0g 16306  df-gsum 16307  df-mre 16450  df-mrc 16451  df-acs 16453  df-mgm 17446  df-sgrp 17488  df-mnd 17499  df-mhm 17539  df-submnd 17540  df-grp 17629  df-minusg 17630  df-subg 17795  df-ghm 17862  df-gim 17905  df-oppg 17979  df-symg 18001  df-pmtr 18065  df-psgn 18114  df-cmn 18398  df-abl 18399  df-mgp 18694  df-ur 18706  df-ring 18753  df-cring 18754  df-oppr 18827  df-dvdsr 18845  df-unit 18846  df-invr 18876  df-dvr 18887  df-drng 18955  df-cnfld 19958
This theorem is referenced by:  mdetleib2  20608
  Copyright terms: Public domain W3C validator