MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgninv Structured version   Visualization version   GIF version

Theorem zrhpsgninv 21527
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgninv.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgninv.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgninv.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
zrhpsgninv ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))

Proof of Theorem zrhpsgninv
StepHypRef Expression
1 eqid 2729 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgninv.s . . . . 5 𝑆 = (pmSgn‘𝑁)
3 zrhpsgninv.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
41, 2, 3psgninv 21524 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
543adant1 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
65fveq2d 6844 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑌‘(𝑆𝐹)) = (𝑌‘(𝑆𝐹)))
7 eqid 2729 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
81, 2, 7psgnghm2 21523 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
9 eqid 2729 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
103, 9ghmf 19134 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
118, 10syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
12113ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2729 . . . . . 6 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
141, 3, 13symginv 19316 . . . . 5 (𝐹𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
15143ad2ant3 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
161symggrp 19314 . . . . . 6 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
17163ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (SymGrp‘𝑁) ∈ Grp)
18 simp3 1138 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
193, 13grpinvcl 18901 . . . . 5 (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2017, 18, 19syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2115, 20eqeltrrd 2829 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
22 fvco3 6942 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2312, 21, 22syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
24 fvco3 6942 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2512, 18, 24syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
266, 23, 253eqtr4d 2774 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cpr 4587  ccnv 5630  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  1c1 11045  -cneg 11382  Basecbs 17155  s cress 17176  Grpcgrp 18847  invgcminusg 18848   GrpHom cghm 19126  SymGrpcsymg 19283  pmSgncpsgn 19403  mulGrpcmgp 20060  Ringcrg 20153  fldccnfld 21296  ℤRHomczrh 21441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-efmnd 18778  df-grp 18850  df-minusg 18851  df-subg 19037  df-ghm 19127  df-gim 19173  df-oppg 19260  df-symg 19284  df-pmtr 19356  df-psgn 19405  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-drng 20651  df-cnfld 21297
This theorem is referenced by:  mdetleib2  22508
  Copyright terms: Public domain W3C validator