MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgninv Structured version   Visualization version   GIF version

Theorem zrhpsgninv 20547
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgninv.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgninv.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgninv.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
zrhpsgninv ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))

Proof of Theorem zrhpsgninv
StepHypRef Expression
1 eqid 2737 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgninv.s . . . . 5 𝑆 = (pmSgn‘𝑁)
3 zrhpsgninv.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
41, 2, 3psgninv 20544 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
543adant1 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
65fveq2d 6721 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑌‘(𝑆𝐹)) = (𝑌‘(𝑆𝐹)))
7 eqid 2737 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
81, 2, 7psgnghm2 20543 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
9 eqid 2737 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
103, 9ghmf 18626 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
118, 10syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
12113ad2ant2 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2737 . . . . . 6 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
141, 3, 13symginv 18794 . . . . 5 (𝐹𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
15143ad2ant3 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
161symggrp 18792 . . . . . 6 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
17163ad2ant2 1136 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (SymGrp‘𝑁) ∈ Grp)
18 simp3 1140 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
193, 13grpinvcl 18415 . . . . 5 (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2017, 18, 19syl2anc 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2115, 20eqeltrrd 2839 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
22 fvco3 6810 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2312, 21, 22syl2anc 587 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
24 fvco3 6810 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2512, 18, 24syl2anc 587 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
266, 23, 253eqtr4d 2787 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  {cpr 4543  ccnv 5550  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  Fincfn 8626  1c1 10730  -cneg 11063  Basecbs 16760  s cress 16784  Grpcgrp 18365  invgcminusg 18366   GrpHom cghm 18619  SymGrpcsymg 18759  pmSgncpsgn 18881  mulGrpcmgp 19504  Ringcrg 19562  fldccnfld 20363  ℤRHomczrh 20466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-word 14070  df-lsw 14118  df-concat 14126  df-s1 14153  df-substr 14206  df-pfx 14236  df-splice 14315  df-reverse 14324  df-s2 14413  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-efmnd 18296  df-grp 18368  df-minusg 18369  df-subg 18540  df-ghm 18620  df-gim 18663  df-oppg 18738  df-symg 18760  df-pmtr 18834  df-psgn 18883  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-cnfld 20364
This theorem is referenced by:  mdetleib2  21485
  Copyright terms: Public domain W3C validator