![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgninv | Structured version Visualization version GIF version |
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgninv.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgninv.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
zrhpsgninv.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
zrhpsgninv | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . 5 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | zrhpsgninv.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | zrhpsgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
4 | 1, 2, 3 | psgninv 20428 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑆‘◡𝐹) = (𝑆‘𝐹)) |
5 | 4 | 3adant1 1110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑆‘◡𝐹) = (𝑆‘𝐹)) |
6 | 5 | fveq2d 6503 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑌‘(𝑆‘◡𝐹)) = (𝑌‘(𝑆‘𝐹))) |
7 | eqid 2778 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
8 | 1, 2, 7 | psgnghm2 20427 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
9 | eqid 2778 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
10 | 3, 9 | ghmf 18133 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
12 | 11 | 3ad2ant2 1114 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
13 | eqid 2778 | . . . . . 6 ⊢ (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁)) | |
14 | 1, 3, 13 | symginv 18291 | . . . . 5 ⊢ (𝐹 ∈ 𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = ◡𝐹) |
15 | 14 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = ◡𝐹) |
16 | 1 | symggrp 18289 | . . . . . 6 ⊢ (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp) |
17 | 16 | 3ad2ant2 1114 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (SymGrp‘𝑁) ∈ Grp) |
18 | simp3 1118 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝐹 ∈ 𝑃) | |
19 | 3, 13 | grpinvcl 17938 | . . . . 5 ⊢ (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃) |
20 | 17, 18, 19 | syl2anc 576 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃) |
21 | 15, 20 | eqeltrrd 2867 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ◡𝐹 ∈ 𝑃) |
22 | fvco3 6588 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ◡𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = (𝑌‘(𝑆‘◡𝐹))) | |
23 | 12, 21, 22 | syl2anc 576 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = (𝑌‘(𝑆‘◡𝐹))) |
24 | fvco3 6588 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
25 | 12, 18, 24 | syl2anc 576 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
26 | 6, 23, 25 | 3eqtr4d 2824 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 {cpr 4443 ◡ccnv 5406 ∘ ccom 5411 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 Fincfn 8306 1c1 10336 -cneg 10671 Basecbs 16339 ↾s cress 16340 Grpcgrp 17891 invgcminusg 17892 GrpHom cghm 18126 SymGrpcsymg 18266 pmSgncpsgn 18378 mulGrpcmgp 18962 Ringcrg 19020 ℂfldccnfld 20247 ℤRHomczrh 20349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-xor 1489 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-ot 4450 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-tpos 7695 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-xnn0 11780 df-z 11794 df-dec 11912 df-uz 12059 df-rp 12205 df-fz 12709 df-fzo 12850 df-seq 13185 df-exp 13245 df-hash 13506 df-word 13673 df-lsw 13726 df-concat 13734 df-s1 13759 df-substr 13804 df-pfx 13853 df-splice 13960 df-reverse 13978 df-s2 14072 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-0g 16571 df-gsum 16572 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-submnd 17804 df-grp 17894 df-minusg 17895 df-subg 18060 df-ghm 18127 df-gim 18170 df-oppg 18245 df-symg 18267 df-pmtr 18331 df-psgn 18380 df-cmn 18668 df-abl 18669 df-mgp 18963 df-ur 18975 df-ring 19022 df-cring 19023 df-oppr 19096 df-dvdsr 19114 df-unit 19115 df-invr 19145 df-dvr 19156 df-drng 19227 df-cnfld 20248 |
This theorem is referenced by: mdetleib2 20901 |
Copyright terms: Public domain | W3C validator |