Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zrhpsgninv | Structured version Visualization version GIF version |
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgninv.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgninv.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
zrhpsgninv.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
zrhpsgninv | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | zrhpsgninv.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | zrhpsgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
4 | 1, 2, 3 | psgninv 20544 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑆‘◡𝐹) = (𝑆‘𝐹)) |
5 | 4 | 3adant1 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑆‘◡𝐹) = (𝑆‘𝐹)) |
6 | 5 | fveq2d 6721 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑌‘(𝑆‘◡𝐹)) = (𝑌‘(𝑆‘𝐹))) |
7 | eqid 2737 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
8 | 1, 2, 7 | psgnghm2 20543 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
9 | eqid 2737 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
10 | 3, 9 | ghmf 18626 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
12 | 11 | 3ad2ant2 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
13 | eqid 2737 | . . . . . 6 ⊢ (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁)) | |
14 | 1, 3, 13 | symginv 18794 | . . . . 5 ⊢ (𝐹 ∈ 𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = ◡𝐹) |
15 | 14 | 3ad2ant3 1137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = ◡𝐹) |
16 | 1 | symggrp 18792 | . . . . . 6 ⊢ (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp) |
17 | 16 | 3ad2ant2 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (SymGrp‘𝑁) ∈ Grp) |
18 | simp3 1140 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝐹 ∈ 𝑃) | |
19 | 3, 13 | grpinvcl 18415 | . . . . 5 ⊢ (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃) |
20 | 17, 18, 19 | syl2anc 587 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃) |
21 | 15, 20 | eqeltrrd 2839 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ◡𝐹 ∈ 𝑃) |
22 | fvco3 6810 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ◡𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = (𝑌‘(𝑆‘◡𝐹))) | |
23 | 12, 21, 22 | syl2anc 587 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = (𝑌‘(𝑆‘◡𝐹))) |
24 | fvco3 6810 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
25 | 12, 18, 24 | syl2anc 587 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
26 | 6, 23, 25 | 3eqtr4d 2787 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 {cpr 4543 ◡ccnv 5550 ∘ ccom 5555 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 Fincfn 8626 1c1 10730 -cneg 11063 Basecbs 16760 ↾s cress 16784 Grpcgrp 18365 invgcminusg 18366 GrpHom cghm 18619 SymGrpcsymg 18759 pmSgncpsgn 18881 mulGrpcmgp 19504 Ringcrg 19562 ℂfldccnfld 20363 ℤRHomczrh 20466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-xor 1508 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-ot 4550 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-word 14070 df-lsw 14118 df-concat 14126 df-s1 14153 df-substr 14206 df-pfx 14236 df-splice 14315 df-reverse 14324 df-s2 14413 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-efmnd 18296 df-grp 18368 df-minusg 18369 df-subg 18540 df-ghm 18620 df-gim 18663 df-oppg 18738 df-symg 18760 df-pmtr 18834 df-psgn 18883 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-drng 19769 df-cnfld 20364 |
This theorem is referenced by: mdetleib2 21485 |
Copyright terms: Public domain | W3C validator |