MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoeq0 Structured version   Visualization version   GIF version

Theorem nmoeq0 23900
Description: The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmoeq0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))

Proof of Theorem nmoeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . 11 ((𝑁𝐹) = 0 → (𝑁𝐹) = 0)
2 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
31, 2eqeltrdi 2847 . . . . . . . . . 10 ((𝑁𝐹) = 0 → (𝑁𝐹) ∈ ℝ)
4 nmo0.1 . . . . . . . . . . . 12 𝑁 = (𝑆 normOp 𝑇)
54isnghm2 23888 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
65biimpar 478 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
73, 6sylan2 593 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 NGHom 𝑇))
8 nmo0.2 . . . . . . . . . 10 𝑉 = (Base‘𝑆)
9 eqid 2738 . . . . . . . . . 10 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2738 . . . . . . . . . 10 (norm‘𝑇) = (norm‘𝑇)
114, 8, 9, 10nmoi 23892 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
127, 11sylan 580 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
13 simplr 766 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝑁𝐹) = 0)
1413oveq1d 7290 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = (0 · ((norm‘𝑆)‘𝑥)))
15 simpl1 1190 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝑆 ∈ NrmGrp)
168, 9nmcl 23772 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1715, 16sylan 580 . . . . . . . . . . 11 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1817recnd 11003 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
1918mul02d 11173 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2014, 19eqtrd 2778 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = 0)
2112, 20breqtrd 5100 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ 0)
22 simpll2 1212 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
23 simpl3 1192 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2738 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
258, 24ghmf 18838 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2623, 25syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹:𝑉⟶(Base‘𝑇))
2726ffvelrnda 6961 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
2824, 10nmge0 23773 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
2922, 27, 28syl2anc 584 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
3024, 10nmcl 23772 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
3122, 27, 30syl2anc 584 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
32 letri3 11060 . . . . . . . 8 ((((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3331, 2, 32sylancl 586 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3421, 29, 33mpbir2and 710 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) = 0)
35 nmo0.3 . . . . . . . 8 0 = (0g𝑇)
3624, 10, 35nmeq0 23774 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3722, 27, 36syl2anc 584 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3834, 37mpbid 231 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) = 0 )
3938mpteq2dva 5174 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑥𝑉 ↦ (𝐹𝑥)) = (𝑥𝑉0 ))
4026feqmptd 6837 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑥𝑉 ↦ (𝐹𝑥)))
41 fconstmpt 5649 . . . . 5 (𝑉 × { 0 }) = (𝑥𝑉0 )
4241a1i 11 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑉 × { 0 }) = (𝑥𝑉0 ))
4339, 40, 423eqtr4d 2788 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑉 × { 0 }))
4443ex 413 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 → 𝐹 = (𝑉 × { 0 })))
454, 8, 35nmo0 23899 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
46453adant3 1131 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) = 0)
47 fveqeq2 6783 . . 3 (𝐹 = (𝑉 × { 0 }) → ((𝑁𝐹) = 0 ↔ (𝑁‘(𝑉 × { 0 })) = 0))
4846, 47syl5ibrcom 246 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 = (𝑉 × { 0 }) → (𝑁𝐹) = 0))
4944, 48impbid 211 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876  cle 11010  Basecbs 16912  0gc0g 17150   GrpHom cghm 18831  normcnm 23732  NrmGrpcngp 23733   normOp cnmo 23869   NGHom cnghm 23870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nmo 23872  df-nghm 23873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator