| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑁‘𝐹) = 0 → (𝑁‘𝐹) = 0) |
| 2 | | 0re 11263 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 3 | 1, 2 | eqeltrdi 2849 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐹) = 0 → (𝑁‘𝐹) ∈ ℝ) |
| 4 | | nmo0.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = (𝑆 normOp 𝑇) |
| 5 | 4 | isnghm2 24745 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) |
| 6 | 5 | biimpar 477 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
| 7 | 3, 6 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
| 8 | | nmo0.2 |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑆) |
| 9 | | eqid 2737 |
. . . . . . . . . 10
⊢
(norm‘𝑆) =
(norm‘𝑆) |
| 10 | | eqid 2737 |
. . . . . . . . . 10
⊢
(norm‘𝑇) =
(norm‘𝑇) |
| 11 | 4, 8, 9, 10 | nmoi 24749 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥))) |
| 12 | 7, 11 | sylan 580 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥))) |
| 13 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (𝑁‘𝐹) = 0) |
| 14 | 13 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) = (0 · ((norm‘𝑆)‘𝑥))) |
| 15 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝑆 ∈ NrmGrp) |
| 16 | 8, 9 | nmcl 24629 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 17 | 15, 16 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 18 | 17 | recnd 11289 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
| 19 | 18 | mul02d 11459 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (0 · ((norm‘𝑆)‘𝑥)) = 0) |
| 20 | 14, 19 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) = 0) |
| 21 | 12, 20 | breqtrd 5169 |
. . . . . . 7
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ 0) |
| 22 | | simpll2 1214 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → 𝑇 ∈ NrmGrp) |
| 23 | | simpl3 1194 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 24 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 25 | 8, 24 | ghmf 19238 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 26 | 23, 25 | syl 17 |
. . . . . . . . 9
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 27 | 26 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
| 28 | 24, 10 | nmge0 24630 |
. . . . . . . 8
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))) |
| 29 | 22, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))) |
| 30 | 24, 10 | nmcl 24629 |
. . . . . . . . 9
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ) |
| 31 | 22, 27, 30 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ) |
| 32 | | letri3 11346 |
. . . . . . . 8
⊢
((((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹‘𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))))) |
| 33 | 31, 2, 32 | sylancl 586 |
. . . . . . 7
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹‘𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))))) |
| 34 | 21, 29, 33 | mpbir2and 713 |
. . . . . 6
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) = 0) |
| 35 | | nmo0.3 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑇) |
| 36 | 24, 10, 35 | nmeq0 24631 |
. . . . . . 7
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (𝐹‘𝑥) = 0 )) |
| 37 | 22, 27, 36 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (𝐹‘𝑥) = 0 )) |
| 38 | 34, 37 | mpbid 232 |
. . . . 5
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) = 0 ) |
| 39 | 38 | mpteq2dva 5242 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → (𝑥 ∈ 𝑉 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑉 ↦ 0 )) |
| 40 | 26 | feqmptd 6977 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝐹‘𝑥))) |
| 41 | | fconstmpt 5747 |
. . . . 5
⊢ (𝑉 × { 0 }) = (𝑥 ∈ 𝑉 ↦ 0 ) |
| 42 | 41 | a1i 11 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → (𝑉 × { 0 }) = (𝑥 ∈ 𝑉 ↦ 0 )) |
| 43 | 39, 40, 42 | 3eqtr4d 2787 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 = (𝑉 × { 0 })) |
| 44 | 43 | ex 412 |
. 2
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 → 𝐹 = (𝑉 × { 0 }))) |
| 45 | 4, 8, 35 | nmo0 24756 |
. . . 4
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
| 46 | 45 | 3adant3 1133 |
. . 3
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) = 0) |
| 47 | | fveqeq2 6915 |
. . 3
⊢ (𝐹 = (𝑉 × { 0 }) → ((𝑁‘𝐹) = 0 ↔ (𝑁‘(𝑉 × { 0 })) = 0)) |
| 48 | 46, 47 | syl5ibrcom 247 |
. 2
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 = (𝑉 × { 0 }) → (𝑁‘𝐹) = 0)) |
| 49 | 44, 48 | impbid 212 |
1
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 }))) |