MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoeq0 Structured version   Visualization version   GIF version

Theorem nmoeq0 24673
Description: The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmoeq0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))

Proof of Theorem nmoeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . 11 ((𝑁𝐹) = 0 → (𝑁𝐹) = 0)
2 0re 11235 . . . . . . . . . . 11 0 ∈ ℝ
31, 2eqeltrdi 2842 . . . . . . . . . 10 ((𝑁𝐹) = 0 → (𝑁𝐹) ∈ ℝ)
4 nmo0.1 . . . . . . . . . . . 12 𝑁 = (𝑆 normOp 𝑇)
54isnghm2 24661 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
65biimpar 477 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
73, 6sylan2 593 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 NGHom 𝑇))
8 nmo0.2 . . . . . . . . . 10 𝑉 = (Base‘𝑆)
9 eqid 2735 . . . . . . . . . 10 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2735 . . . . . . . . . 10 (norm‘𝑇) = (norm‘𝑇)
114, 8, 9, 10nmoi 24665 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
127, 11sylan 580 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
13 simplr 768 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝑁𝐹) = 0)
1413oveq1d 7418 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = (0 · ((norm‘𝑆)‘𝑥)))
15 simpl1 1192 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝑆 ∈ NrmGrp)
168, 9nmcl 24553 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1715, 16sylan 580 . . . . . . . . . . 11 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1817recnd 11261 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
1918mul02d 11431 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2014, 19eqtrd 2770 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = 0)
2112, 20breqtrd 5145 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ 0)
22 simpll2 1214 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
23 simpl3 1194 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2735 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
258, 24ghmf 19201 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2623, 25syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹:𝑉⟶(Base‘𝑇))
2726ffvelcdmda 7073 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
2824, 10nmge0 24554 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
2922, 27, 28syl2anc 584 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
3024, 10nmcl 24553 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
3122, 27, 30syl2anc 584 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
32 letri3 11318 . . . . . . . 8 ((((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3331, 2, 32sylancl 586 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3421, 29, 33mpbir2and 713 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) = 0)
35 nmo0.3 . . . . . . . 8 0 = (0g𝑇)
3624, 10, 35nmeq0 24555 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3722, 27, 36syl2anc 584 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3834, 37mpbid 232 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) = 0 )
3938mpteq2dva 5214 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑥𝑉 ↦ (𝐹𝑥)) = (𝑥𝑉0 ))
4026feqmptd 6946 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑥𝑉 ↦ (𝐹𝑥)))
41 fconstmpt 5716 . . . . 5 (𝑉 × { 0 }) = (𝑥𝑉0 )
4241a1i 11 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑉 × { 0 }) = (𝑥𝑉0 ))
4339, 40, 423eqtr4d 2780 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑉 × { 0 }))
4443ex 412 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 → 𝐹 = (𝑉 × { 0 })))
454, 8, 35nmo0 24672 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
46453adant3 1132 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) = 0)
47 fveqeq2 6884 . . 3 (𝐹 = (𝑉 × { 0 }) → ((𝑁𝐹) = 0 ↔ (𝑁‘(𝑉 × { 0 })) = 0))
4846, 47syl5ibrcom 247 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 = (𝑉 × { 0 }) → (𝑁𝐹) = 0))
4944, 48impbid 212 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127   · cmul 11132  cle 11268  Basecbs 17226  0gc0g 17451   GrpHom cghm 19193  normcnm 24513  NrmGrpcngp 24514   normOp cnmo 24642   NGHom cnghm 24643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ico 13366  df-0g 17453  df-topgen 17455  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-ghm 19194  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-xms 24257  df-ms 24258  df-nm 24519  df-ngp 24520  df-nmo 24645  df-nghm 24646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator