Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑁‘𝐹) = 0 → (𝑁‘𝐹) = 0) |
2 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
3 | 1, 2 | eqeltrdi 2847 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐹) = 0 → (𝑁‘𝐹) ∈ ℝ) |
4 | | nmo0.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = (𝑆 normOp 𝑇) |
5 | 4 | isnghm2 23888 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) |
6 | 5 | biimpar 478 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
7 | 3, 6 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
8 | | nmo0.2 |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑆) |
9 | | eqid 2738 |
. . . . . . . . . 10
⊢
(norm‘𝑆) =
(norm‘𝑆) |
10 | | eqid 2738 |
. . . . . . . . . 10
⊢
(norm‘𝑇) =
(norm‘𝑇) |
11 | 4, 8, 9, 10 | nmoi 23892 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥))) |
12 | 7, 11 | sylan 580 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥))) |
13 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (𝑁‘𝐹) = 0) |
14 | 13 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) = (0 · ((norm‘𝑆)‘𝑥))) |
15 | | simpl1 1190 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝑆 ∈ NrmGrp) |
16 | 8, 9 | nmcl 23772 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
17 | 15, 16 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
18 | 17 | recnd 11003 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
19 | 18 | mul02d 11173 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (0 · ((norm‘𝑆)‘𝑥)) = 0) |
20 | 14, 19 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) = 0) |
21 | 12, 20 | breqtrd 5100 |
. . . . . . 7
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ 0) |
22 | | simpll2 1212 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → 𝑇 ∈ NrmGrp) |
23 | | simpl3 1192 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
24 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑇) =
(Base‘𝑇) |
25 | 8, 24 | ghmf 18838 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
26 | 23, 25 | syl 17 |
. . . . . . . . 9
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹:𝑉⟶(Base‘𝑇)) |
27 | 26 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
28 | 24, 10 | nmge0 23773 |
. . . . . . . 8
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))) |
29 | 22, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))) |
30 | 24, 10 | nmcl 23772 |
. . . . . . . . 9
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ) |
31 | 22, 27, 30 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ) |
32 | | letri3 11060 |
. . . . . . . 8
⊢
((((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹‘𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))))) |
33 | 31, 2, 32 | sylancl 586 |
. . . . . . 7
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹‘𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹‘𝑥))))) |
34 | 21, 29, 33 | mpbir2and 710 |
. . . . . 6
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘𝑥)) = 0) |
35 | | nmo0.3 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑇) |
36 | 24, 10, 35 | nmeq0 23774 |
. . . . . . 7
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (𝐹‘𝑥) = 0 )) |
37 | 22, 27, 36 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (((norm‘𝑇)‘(𝐹‘𝑥)) = 0 ↔ (𝐹‘𝑥) = 0 )) |
38 | 34, 37 | mpbid 231 |
. . . . 5
⊢ ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) = 0 ) |
39 | 38 | mpteq2dva 5174 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → (𝑥 ∈ 𝑉 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑉 ↦ 0 )) |
40 | 26 | feqmptd 6837 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝐹‘𝑥))) |
41 | | fconstmpt 5649 |
. . . . 5
⊢ (𝑉 × { 0 }) = (𝑥 ∈ 𝑉 ↦ 0 ) |
42 | 41 | a1i 11 |
. . . 4
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → (𝑉 × { 0 }) = (𝑥 ∈ 𝑉 ↦ 0 )) |
43 | 39, 40, 42 | 3eqtr4d 2788 |
. . 3
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) = 0) → 𝐹 = (𝑉 × { 0 })) |
44 | 43 | ex 413 |
. 2
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 → 𝐹 = (𝑉 × { 0 }))) |
45 | 4, 8, 35 | nmo0 23899 |
. . . 4
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
46 | 45 | 3adant3 1131 |
. . 3
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) = 0) |
47 | | fveqeq2 6783 |
. . 3
⊢ (𝐹 = (𝑉 × { 0 }) → ((𝑁‘𝐹) = 0 ↔ (𝑁‘(𝑉 × { 0 })) = 0)) |
48 | 46, 47 | syl5ibrcom 246 |
. 2
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 = (𝑉 × { 0 }) → (𝑁‘𝐹) = 0)) |
49 | 44, 48 | impbid 211 |
1
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 }))) |