MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnevpm Structured version   Visualization version   GIF version

Theorem zrhpsgnevpm 20332
Description: The sign of an even permutation embedded into a ring is the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgnevpm.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgnevpm.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnevpm.o 1 = (1r𝑅)
Assertion
Ref Expression
zrhpsgnevpm ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌𝑆)‘𝐹) = 1 )

Proof of Theorem zrhpsgnevpm
StepHypRef Expression
1 eqid 2778 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgnevpm.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
3 eqid 2778 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 20322 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 eqid 2778 . . . . . 6 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
6 eqid 2778 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
75, 6ghmf 18048 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:(Base‘(SymGrp‘𝑁))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
84, 7syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:(Base‘(SymGrp‘𝑁))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
983ad2ant2 1125 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → 𝑆:(Base‘(SymGrp‘𝑁))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
101, 5evpmss 20327 . . . . 5 (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
1110sseli 3817 . . . 4 (𝐹 ∈ (pmEven‘𝑁) → 𝐹 ∈ (Base‘(SymGrp‘𝑁)))
12113ad2ant3 1126 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → 𝐹 ∈ (Base‘(SymGrp‘𝑁)))
13 fvco3 6535 . . 3 ((𝑆:(Base‘(SymGrp‘𝑁))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ (Base‘(SymGrp‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
149, 12, 13syl2anc 579 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
151, 5, 2psgnevpm 20330 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → (𝑆𝐹) = 1)
16153adant1 1121 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → (𝑆𝐹) = 1)
1716fveq2d 6450 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → (𝑌‘(𝑆𝐹)) = (𝑌‘1))
18 zrhpsgnevpm.y . . . 4 𝑌 = (ℤRHom‘𝑅)
19 zrhpsgnevpm.o . . . 4 1 = (1r𝑅)
2018, 19zrh1 20257 . . 3 (𝑅 ∈ Ring → (𝑌‘1) = 1 )
21203ad2ant1 1124 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → (𝑌‘1) = 1 )
2214, 17, 213eqtrd 2818 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌𝑆)‘𝐹) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  {cpr 4400  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  Fincfn 8241  1c1 10273  -cneg 10607  Basecbs 16255  s cress 16256   GrpHom cghm 18041  SymGrpcsymg 18180  pmSgncpsgn 18292  pmEvencevpm 18293  mulGrpcmgp 18876  1rcur 18888  Ringcrg 18934  fldccnfld 20142  ℤRHomczrh 20244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-xor 1583  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-substr 13731  df-pfx 13780  df-splice 13887  df-reverse 13905  df-s2 13999  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-gsum 16489  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-mulg 17928  df-subg 17975  df-ghm 18042  df-gim 18085  df-oppg 18159  df-symg 18181  df-pmtr 18245  df-psgn 18294  df-evpm 18295  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-rnghom 19104  df-drng 19141  df-subrg 19170  df-cnfld 20143  df-zring 20215  df-zrh 20248
This theorem is referenced by:  mdet0pr  20803  mdetralt  20819
  Copyright terms: Public domain W3C validator