| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptfif1o | Structured version Visualization version GIF version | ||
| Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsummptcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptcl.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptcl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| gsummptcl.e | ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) |
| gsummptfif1o.f | ⊢ 𝐹 = (𝑖 ∈ 𝑁 ↦ 𝑋) |
| gsummptfif1o.h | ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝑁) |
| Ref | Expression |
|---|---|
| gsummptfif1o | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | gsummptcl.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummptcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 5 | gsummptcl.e | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) | |
| 6 | gsummptfif1o.f | . . . 4 ⊢ 𝐹 = (𝑖 ∈ 𝑁 ↦ 𝑋) | |
| 7 | 6 | fmpt 7043 | . . 3 ⊢ (∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ↔ 𝐹:𝑁⟶𝐵) |
| 8 | 5, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:𝑁⟶𝐵) |
| 9 | fvexd 6837 | . . 3 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
| 10 | 8, 4, 9 | fdmfifsupp 9259 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
| 11 | gsummptfif1o.h | . 2 ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝑁) | |
| 12 | 1, 2, 3, 4, 8, 10, 11 | gsumf1o 19829 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ↦ cmpt 5172 ∘ ccom 5620 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cntz 19230 df-cmn 19695 |
| This theorem is referenced by: mdetleib2 22504 mdetralt 22524 |
| Copyright terms: Public domain | W3C validator |