Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smadiadetlem1a | Structured version Visualization version GIF version |
Description: Lemma 1a for smadiadet 21371: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
Ref | Expression |
---|---|
marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
marep01ma.r | ⊢ 𝑅 ∈ CRing |
marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
smadiadetlem.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
smadiadetlem.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
madetminlem.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetminlem.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetminlem.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
smadiadetlem1a | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marep01ma.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marep01ma.r | . . . . . . 7 ⊢ 𝑅 ∈ CRing | |
4 | marep01ma.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
5 | marep01ma.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
6 | smadiadetlem.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
7 | smadiadetlem.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
8 | 1, 2, 3, 4, 5, 6, 7 | smadiadetlem0 21362 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = 0 )) |
9 | 8 | imp 411 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = 0 ) |
10 | 9 | oveq2d 7167 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) = (((𝑌 ∘ 𝑆)‘𝑝) · 0 )) |
11 | 10 | mpteq2dva 5128 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))) = (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 ))) |
12 | 11 | oveq2d 7167 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 )))) |
13 | crngring 19378 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
14 | 3, 13 | mp1i 13 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ Ring) |
15 | 1, 2 | matrcl 21113 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
16 | 15 | simpld 499 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
17 | 16 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝑁 ∈ Fin) |
18 | 17 | adantr 485 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑁 ∈ Fin) |
19 | eldifi 4033 | . . . . . . 7 ⊢ (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → 𝑝 ∈ 𝑃) | |
20 | 19 | adantl 486 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑝 ∈ 𝑃) |
21 | madetminlem.s | . . . . . . 7 ⊢ 𝑆 = (pmSgn‘𝑁) | |
22 | madetminlem.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
23 | 6, 21, 22 | zrhcopsgnelbas 20361 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) |
24 | 14, 18, 20, 23 | syl3anc 1369 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) |
25 | eqid 2759 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
26 | madetminlem.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
27 | 25, 26, 4 | ringrz 19410 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) → (((𝑌 ∘ 𝑆)‘𝑝) · 0 ) = 0 ) |
28 | 14, 24, 27 | syl2anc 588 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (((𝑌 ∘ 𝑆)‘𝑝) · 0 ) = 0 ) |
29 | 28 | mpteq2dva 5128 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 )) = (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) |
30 | 29 | oveq2d 7167 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 ))) = (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 ))) |
31 | ringmnd 19376 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
32 | 3, 13, 31 | mp2b 10 | . . 3 ⊢ 𝑅 ∈ Mnd |
33 | 6 | fvexi 6673 | . . . 4 ⊢ 𝑃 ∈ V |
34 | difexg 5198 | . . . 4 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) | |
35 | 33, 34 | mp1i 13 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) |
36 | 4 | gsumz 18067 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) = 0 ) |
37 | 32, 35, 36 | sylancr 591 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) = 0 ) |
38 | 12, 30, 37 | 3eqtrd 2798 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 {crab 3075 Vcvv 3410 ∖ cdif 3856 ifcif 4421 ↦ cmpt 5113 ∘ ccom 5529 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 Fincfn 8528 Basecbs 16542 .rcmulr 16625 0gc0g 16772 Σg cgsu 16773 Mndcmnd 17978 SymGrpcsymg 18563 pmSgncpsgn 18685 mulGrpcmgp 19308 1rcur 19320 Ringcrg 19366 CRingccrg 19367 ℤRHomczrh 20270 Mat cmat 21108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-addf 10655 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-sup 8940 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-xnn0 12008 df-z 12022 df-dec 12139 df-uz 12284 df-rp 12432 df-fz 12941 df-fzo 13084 df-seq 13420 df-exp 13481 df-hash 13742 df-word 13915 df-lsw 13963 df-concat 13971 df-s1 13998 df-substr 14051 df-pfx 14081 df-splice 14160 df-reverse 14169 df-s2 14258 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-hom 16648 df-cco 16649 df-0g 16774 df-gsum 16775 df-prds 16780 df-pws 16782 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mhm 18023 df-submnd 18024 df-efmnd 18101 df-grp 18173 df-minusg 18174 df-mulg 18293 df-subg 18344 df-ghm 18424 df-gim 18467 df-cntz 18515 df-oppg 18542 df-symg 18564 df-pmtr 18638 df-psgn 18687 df-cmn 18976 df-mgp 19309 df-ur 19321 df-ring 19368 df-cring 19369 df-rnghom 19539 df-subrg 19602 df-sra 20013 df-rgmod 20014 df-cnfld 20168 df-zring 20240 df-zrh 20274 df-dsmm 20498 df-frlm 20513 df-mat 21109 |
This theorem is referenced by: smadiadetlem2 21365 |
Copyright terms: Public domain | W3C validator |