![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smadiadetlem1a | Structured version Visualization version GIF version |
Description: Lemma 1a for smadiadet 20967: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
Ref | Expression |
---|---|
marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
marep01ma.r | ⊢ 𝑅 ∈ CRing |
marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
smadiadetlem.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
smadiadetlem.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
madetminlem.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetminlem.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetminlem.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
smadiadetlem1a | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marep01ma.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marep01ma.r | . . . . . . 7 ⊢ 𝑅 ∈ CRing | |
4 | marep01ma.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
5 | marep01ma.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
6 | smadiadetlem.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
7 | smadiadetlem.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
8 | 1, 2, 3, 4, 5, 6, 7 | smadiadetlem0 20958 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = 0 )) |
9 | 8 | imp 407 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = 0 ) |
10 | 9 | oveq2d 7039 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) = (((𝑌 ∘ 𝑆)‘𝑝) · 0 )) |
11 | 10 | mpteq2dva 5062 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))) = (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 ))) |
12 | 11 | oveq2d 7039 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 )))) |
13 | crngring 19002 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
14 | 3, 13 | mp1i 13 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ Ring) |
15 | 1, 2 | matrcl 20709 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
16 | 15 | simpld 495 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
17 | 16 | 3ad2ant1 1126 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝑁 ∈ Fin) |
18 | 17 | adantr 481 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑁 ∈ Fin) |
19 | eldifi 4030 | . . . . . . 7 ⊢ (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → 𝑝 ∈ 𝑃) | |
20 | 19 | adantl 482 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑝 ∈ 𝑃) |
21 | madetminlem.s | . . . . . . 7 ⊢ 𝑆 = (pmSgn‘𝑁) | |
22 | madetminlem.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
23 | 6, 21, 22 | zrhcopsgnelbas 20425 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) |
24 | 14, 18, 20, 23 | syl3anc 1364 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) |
25 | eqid 2797 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
26 | madetminlem.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
27 | 25, 26, 4 | ringrz 19032 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) → (((𝑌 ∘ 𝑆)‘𝑝) · 0 ) = 0 ) |
28 | 14, 24, 27 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (((𝑌 ∘ 𝑆)‘𝑝) · 0 ) = 0 ) |
29 | 28 | mpteq2dva 5062 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 )) = (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) |
30 | 29 | oveq2d 7039 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 ))) = (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 ))) |
31 | ringmnd 19000 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
32 | 3, 13, 31 | mp2b 10 | . . 3 ⊢ 𝑅 ∈ Mnd |
33 | 6 | fvexi 6559 | . . . 4 ⊢ 𝑃 ∈ V |
34 | difexg 5129 | . . . 4 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) | |
35 | 33, 34 | mp1i 13 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) |
36 | 4 | gsumz 17817 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) = 0 ) |
37 | 32, 35, 36 | sylancr 587 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) = 0 ) |
38 | 12, 30, 37 | 3eqtrd 2837 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 {crab 3111 Vcvv 3440 ∖ cdif 3862 ifcif 4387 ↦ cmpt 5047 ∘ ccom 5454 ‘cfv 6232 (class class class)co 7023 ∈ cmpo 7025 Fincfn 8364 Basecbs 16316 .rcmulr 16399 0gc0g 16546 Σg cgsu 16547 Mndcmnd 17737 SymGrpcsymg 18240 pmSgncpsgn 18352 mulGrpcmgp 18933 1rcur 18945 Ringcrg 18991 CRingccrg 18992 ℤRHomczrh 20333 Mat cmat 20704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-xor 1497 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-ot 4487 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-tpos 7750 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-sup 8759 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-xnn0 11822 df-z 11836 df-dec 11953 df-uz 12098 df-rp 12244 df-fz 12747 df-fzo 12888 df-seq 13224 df-exp 13284 df-hash 13545 df-word 13712 df-lsw 13765 df-concat 13773 df-s1 13798 df-substr 13843 df-pfx 13873 df-splice 13952 df-reverse 13961 df-s2 14050 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-hom 16422 df-cco 16423 df-0g 16548 df-gsum 16549 df-prds 16554 df-pws 16556 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mhm 17778 df-submnd 17779 df-grp 17868 df-minusg 17869 df-mulg 17986 df-subg 18034 df-ghm 18101 df-gim 18144 df-cntz 18192 df-oppg 18219 df-symg 18241 df-pmtr 18305 df-psgn 18354 df-cmn 18639 df-mgp 18934 df-ur 18946 df-ring 18993 df-cring 18994 df-rnghom 19161 df-subrg 19227 df-sra 19638 df-rgmod 19639 df-cnfld 20232 df-zring 20304 df-zrh 20337 df-dsmm 20562 df-frlm 20577 df-mat 20705 |
This theorem is referenced by: smadiadetlem2 20961 |
Copyright terms: Public domain | W3C validator |