| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smadiadetlem1a | Structured version Visualization version GIF version | ||
| Description: Lemma 1a for smadiadet 22564: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
| Ref | Expression |
|---|---|
| marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
| marep01ma.r | ⊢ 𝑅 ∈ CRing |
| marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
| marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
| smadiadetlem.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| smadiadetlem.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| madetminlem.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| madetminlem.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| madetminlem.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| smadiadetlem1a | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marep01ma.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | marep01ma.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | marep01ma.r | . . . . . . 7 ⊢ 𝑅 ∈ CRing | |
| 4 | marep01ma.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 5 | marep01ma.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 6 | smadiadetlem.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 7 | smadiadetlem.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | smadiadetlem0 22555 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = 0 )) |
| 9 | 8 | imp 406 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = 0 ) |
| 10 | 9 | oveq2d 7406 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) = (((𝑌 ∘ 𝑆)‘𝑝) · 0 )) |
| 11 | 10 | mpteq2dva 5203 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))) = (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 ))) |
| 12 | 11 | oveq2d 7406 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 )))) |
| 13 | crngring 20161 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 14 | 3, 13 | mp1i 13 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ Ring) |
| 15 | 1, 2 | matrcl 22306 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 16 | 15 | simpld 494 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑁 ∈ Fin) |
| 19 | eldifi 4097 | . . . . . . 7 ⊢ (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → 𝑝 ∈ 𝑃) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑝 ∈ 𝑃) |
| 21 | madetminlem.s | . . . . . . 7 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 22 | madetminlem.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 23 | 6, 21, 22 | zrhcopsgnelbas 21511 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) |
| 24 | 14, 18, 20, 23 | syl3anc 1373 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) |
| 25 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 26 | madetminlem.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 27 | 25, 26, 4 | ringrz 20210 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ((𝑌 ∘ 𝑆)‘𝑝) ∈ (Base‘𝑅)) → (((𝑌 ∘ 𝑆)‘𝑝) · 0 ) = 0 ) |
| 28 | 14, 24, 27 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (((𝑌 ∘ 𝑆)‘𝑝) · 0 ) = 0 ) |
| 29 | 28 | mpteq2dva 5203 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 )) = (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) |
| 30 | 29 | oveq2d 7406 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · 0 ))) = (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 ))) |
| 31 | ringmnd 20159 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 32 | 3, 13, 31 | mp2b 10 | . . 3 ⊢ 𝑅 ∈ Mnd |
| 33 | 6 | fvexi 6875 | . . . 4 ⊢ 𝑃 ∈ V |
| 34 | difexg 5287 | . . . 4 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) | |
| 35 | 33, 34 | mp1i 13 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) |
| 36 | 4 | gsumz 18770 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ∈ V) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) = 0 ) |
| 37 | 32, 35, 36 | sylancr 587 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ 0 )) = 0 ) |
| 38 | 12, 30, 37 | 3eqtrd 2769 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∖ cdif 3914 ifcif 4491 ↦ cmpt 5191 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Fincfn 8921 Basecbs 17186 .rcmulr 17228 0gc0g 17409 Σg cgsu 17410 Mndcmnd 18668 SymGrpcsymg 19306 pmSgncpsgn 19426 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 CRingccrg 20150 ℤRHomczrh 21416 Mat cmat 22301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-splice 14722 df-reverse 14731 df-s2 14821 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-efmnd 18803 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-symg 19307 df-pmtr 19379 df-psgn 19428 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-dsmm 21648 df-frlm 21663 df-mat 22302 |
| This theorem is referenced by: smadiadetlem2 22558 |
| Copyright terms: Public domain | W3C validator |