MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashsslei Structured version   Visualization version   GIF version

Theorem hashsslei 14333
Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
hashsslei.b 𝐵𝐴
hashsslei.a (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁)
hashsslei.n 𝑁 ∈ ℕ0
Assertion
Ref Expression
hashsslei (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁)

Proof of Theorem hashsslei
StepHypRef Expression
1 hashsslei.a . . . 4 (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁)
21simpli 485 . . 3 𝐴 ∈ Fin
3 hashsslei.b . . 3 𝐵𝐴
4 ssfi 9124 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
52, 3, 4mp2an 691 . 2 𝐵 ∈ Fin
6 ssdomg 8947 . . . . 5 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
72, 3, 6mp2 9 . . . 4 𝐵𝐴
8 hashdom 14286 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴))
95, 2, 8mp2an 691 . . . 4 ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴)
107, 9mpbir 230 . . 3 (♯‘𝐵) ≤ (♯‘𝐴)
111simpri 487 . . 3 (♯‘𝐴) ≤ 𝑁
12 hashcl 14263 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
135, 12ax-mp 5 . . . . 5 (♯‘𝐵) ∈ ℕ0
1413nn0rei 12431 . . . 4 (♯‘𝐵) ∈ ℝ
15 hashcl 14263 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
162, 15ax-mp 5 . . . . 5 (♯‘𝐴) ∈ ℕ0
1716nn0rei 12431 . . . 4 (♯‘𝐴) ∈ ℝ
18 hashsslei.n . . . . 5 𝑁 ∈ ℕ0
1918nn0rei 12431 . . . 4 𝑁 ∈ ℝ
2014, 17, 19letri 11291 . . 3 (((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≤ 𝑁) → (♯‘𝐵) ≤ 𝑁)
2110, 11, 20mp2an 691 . 2 (♯‘𝐵) ≤ 𝑁
225, 21pm3.2i 472 1 (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107  wss 3915   class class class wbr 5110  cfv 6501  cdom 8888  Fincfn 8890  cle 11197  0cn0 12420  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  kur14lem9  33848
  Copyright terms: Public domain W3C validator