![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsslei | Structured version Visualization version GIF version |
Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
hashsslei.b | ⊢ 𝐵 ⊆ 𝐴 |
hashsslei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) |
hashsslei.n | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
hashsslei | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashsslei.a | . . . 4 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) | |
2 | 1 | simpli 476 | . . 3 ⊢ 𝐴 ∈ Fin |
3 | hashsslei.b | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
4 | ssfi 8539 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
5 | 2, 3, 4 | mp2an 680 | . 2 ⊢ 𝐵 ∈ Fin |
6 | ssdomg 8358 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
7 | 2, 3, 6 | mp2 9 | . . . 4 ⊢ 𝐵 ≼ 𝐴 |
8 | hashdom 13559 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
9 | 5, 2, 8 | mp2an 680 | . . . 4 ⊢ ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴) |
10 | 7, 9 | mpbir 223 | . . 3 ⊢ (♯‘𝐵) ≤ (♯‘𝐴) |
11 | 1 | simpri 478 | . . 3 ⊢ (♯‘𝐴) ≤ 𝑁 |
12 | hashcl 13538 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
13 | 5, 12 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐵) ∈ ℕ0 |
14 | 13 | nn0rei 11725 | . . . 4 ⊢ (♯‘𝐵) ∈ ℝ |
15 | hashcl 13538 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | 2, 15 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐴) ∈ ℕ0 |
17 | 16 | nn0rei 11725 | . . . 4 ⊢ (♯‘𝐴) ∈ ℝ |
18 | hashsslei.n | . . . . 5 ⊢ 𝑁 ∈ ℕ0 | |
19 | 18 | nn0rei 11725 | . . . 4 ⊢ 𝑁 ∈ ℝ |
20 | 14, 17, 19 | letri 10575 | . . 3 ⊢ (((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≤ 𝑁) → (♯‘𝐵) ≤ 𝑁) |
21 | 10, 11, 20 | mp2an 680 | . 2 ⊢ (♯‘𝐵) ≤ 𝑁 |
22 | 5, 21 | pm3.2i 463 | 1 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∈ wcel 2051 ⊆ wss 3831 class class class wbr 4934 ‘cfv 6193 ≼ cdom 8310 Fincfn 8312 ≤ cle 10481 ℕ0cn0 11713 ♯chash 13511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-card 9168 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-nn 11446 df-n0 11714 df-xnn0 11786 df-z 11800 df-uz 12065 df-fz 12715 df-hash 13512 |
This theorem is referenced by: kur14lem9 32086 |
Copyright terms: Public domain | W3C validator |