| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashsslei | Structured version Visualization version GIF version | ||
| Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| hashsslei.b | ⊢ 𝐵 ⊆ 𝐴 |
| hashsslei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) |
| hashsslei.n | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| hashsslei | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashsslei.a | . . . 4 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) | |
| 2 | 1 | simpli 483 | . . 3 ⊢ 𝐴 ∈ Fin |
| 3 | hashsslei.b | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
| 4 | ssfi 9097 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ 𝐵 ∈ Fin |
| 6 | ssdomg 8932 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
| 7 | 2, 3, 6 | mp2 9 | . . . 4 ⊢ 𝐵 ≼ 𝐴 |
| 8 | hashdom 14305 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
| 9 | 5, 2, 8 | mp2an 692 | . . . 4 ⊢ ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴) |
| 10 | 7, 9 | mpbir 231 | . . 3 ⊢ (♯‘𝐵) ≤ (♯‘𝐴) |
| 11 | 1 | simpri 485 | . . 3 ⊢ (♯‘𝐴) ≤ 𝑁 |
| 12 | hashcl 14282 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 13 | 5, 12 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐵) ∈ ℕ0 |
| 14 | 13 | nn0rei 12414 | . . . 4 ⊢ (♯‘𝐵) ∈ ℝ |
| 15 | hashcl 14282 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 16 | 2, 15 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐴) ∈ ℕ0 |
| 17 | 16 | nn0rei 12414 | . . . 4 ⊢ (♯‘𝐴) ∈ ℝ |
| 18 | hashsslei.n | . . . . 5 ⊢ 𝑁 ∈ ℕ0 | |
| 19 | 18 | nn0rei 12414 | . . . 4 ⊢ 𝑁 ∈ ℝ |
| 20 | 14, 17, 19 | letri 11264 | . . 3 ⊢ (((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≤ 𝑁) → (♯‘𝐵) ≤ 𝑁) |
| 21 | 10, 11, 20 | mp2an 692 | . 2 ⊢ (♯‘𝐵) ≤ 𝑁 |
| 22 | 5, 21 | pm3.2i 470 | 1 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 ≼ cdom 8877 Fincfn 8879 ≤ cle 11169 ℕ0cn0 12403 ♯chash 14256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-hash 14257 |
| This theorem is referenced by: kur14lem9 35206 |
| Copyright terms: Public domain | W3C validator |