MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashsslei Structured version   Visualization version   GIF version

Theorem hashsslei 14141
Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
hashsslei.b 𝐵𝐴
hashsslei.a (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁)
hashsslei.n 𝑁 ∈ ℕ0
Assertion
Ref Expression
hashsslei (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁)

Proof of Theorem hashsslei
StepHypRef Expression
1 hashsslei.a . . . 4 (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁)
21simpli 484 . . 3 𝐴 ∈ Fin
3 hashsslei.b . . 3 𝐵𝐴
4 ssfi 8956 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
52, 3, 4mp2an 689 . 2 𝐵 ∈ Fin
6 ssdomg 8786 . . . . 5 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
72, 3, 6mp2 9 . . . 4 𝐵𝐴
8 hashdom 14094 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴))
95, 2, 8mp2an 689 . . . 4 ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴)
107, 9mpbir 230 . . 3 (♯‘𝐵) ≤ (♯‘𝐴)
111simpri 486 . . 3 (♯‘𝐴) ≤ 𝑁
12 hashcl 14071 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
135, 12ax-mp 5 . . . . 5 (♯‘𝐵) ∈ ℕ0
1413nn0rei 12244 . . . 4 (♯‘𝐵) ∈ ℝ
15 hashcl 14071 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
162, 15ax-mp 5 . . . . 5 (♯‘𝐴) ∈ ℕ0
1716nn0rei 12244 . . . 4 (♯‘𝐴) ∈ ℝ
18 hashsslei.n . . . . 5 𝑁 ∈ ℕ0
1918nn0rei 12244 . . . 4 𝑁 ∈ ℝ
2014, 17, 19letri 11104 . . 3 (((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≤ 𝑁) → (♯‘𝐵) ≤ 𝑁)
2110, 11, 20mp2an 689 . 2 (♯‘𝐵) ≤ 𝑁
225, 21pm3.2i 471 1 (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wss 3887   class class class wbr 5074  cfv 6433  cdom 8731  Fincfn 8733  cle 11010  0cn0 12233  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  kur14lem9  33176
  Copyright terms: Public domain W3C validator