Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv0val Structured version   Visualization version   GIF version

Theorem hoidmv0val 42872
Description: The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv0val.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmv0val.a (𝜑𝐴:∅⟶ℝ)
hoidmv0val.b (𝜑𝐵:∅⟶ℝ)
Assertion
Ref Expression
hoidmv0val (𝜑 → (𝐴(𝐿‘∅)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝜑,𝑎,𝑥,𝑏   𝑥,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmv0val
StepHypRef Expression
1 hoidmv0val.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoidmv0val.a . . 3 (𝜑𝐴:∅⟶ℝ)
3 hoidmv0val.b . . 3 (𝜑𝐵:∅⟶ℝ)
4 0fin 8748 . . . 4 ∅ ∈ Fin
54a1i 11 . . 3 (𝜑 → ∅ ∈ Fin)
61, 2, 3, 5hoidmvval 42866 . 2 (𝜑 → (𝐴(𝐿‘∅)𝐵) = if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
7 eqid 2823 . . . 4 ∅ = ∅
8 iftrue 4475 . . . 4 (∅ = ∅ → if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = 0)
97, 8ax-mp 5 . . 3 if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = 0
109a1i 11 . 2 (𝜑 → if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = 0)
116, 10eqtrd 2858 1 (𝜑 → (𝐴(𝐿‘∅)𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  c0 4293  ifcif 4469  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  m cmap 8408  Fincfn 8511  cr 10538  0cc0 10539  [,)cico 12743  cprod 15261  volcvol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-prod 15262
This theorem is referenced by:  hoidmvval0b  42879  hoidmvlelem2  42885  hoidmvlelem3  42886  hoidmvle  42889  ovnhoi  42892  vonioo  42971  vonicc  42974
  Copyright terms: Public domain W3C validator