Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv0val Structured version   Visualization version   GIF version

Theorem hoidmv0val 43161
Description: The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv0val.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmv0val.a (𝜑𝐴:∅⟶ℝ)
hoidmv0val.b (𝜑𝐵:∅⟶ℝ)
Assertion
Ref Expression
hoidmv0val (𝜑 → (𝐴(𝐿‘∅)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝜑,𝑎,𝑥,𝑏   𝑥,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmv0val
StepHypRef Expression
1 hoidmv0val.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoidmv0val.a . . 3 (𝜑𝐴:∅⟶ℝ)
3 hoidmv0val.b . . 3 (𝜑𝐵:∅⟶ℝ)
4 0fin 8734 . . . 4 ∅ ∈ Fin
54a1i 11 . . 3 (𝜑 → ∅ ∈ Fin)
61, 2, 3, 5hoidmvval 43155 . 2 (𝜑 → (𝐴(𝐿‘∅)𝐵) = if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
7 eqid 2822 . . . 4 ∅ = ∅
8 iftrue 4445 . . . 4 (∅ = ∅ → if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = 0)
97, 8ax-mp 5 . . 3 if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = 0
109a1i 11 . 2 (𝜑 → if(∅ = ∅, 0, ∏𝑘 ∈ ∅ (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = 0)
116, 10eqtrd 2857 1 (𝜑 → (𝐴(𝐿‘∅)𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  c0 4265  ifcif 4439  cmpt 5122  wf 6330  cfv 6334  (class class class)co 7140  cmpo 7142  m cmap 8393  Fincfn 8496  cr 10525  0cc0 10526  [,)cico 12728  cprod 15250  volcvol 24065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-prod 15251
This theorem is referenced by:  hoidmvval0b  43168  hoidmvlelem2  43174  hoidmvlelem3  43175  hoidmvle  43178  ovnhoi  43181  vonioo  43260  vonicc  43263
  Copyright terms: Public domain W3C validator