![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartltu | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartltu | ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 0zd 12507 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ∈ ℤ) | |
3 | nnz 12516 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
4 | nngt0 12180 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
5 | 2, 3, 4 | 3jca 1128 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
7 | fzopred 45486 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) |
9 | 0p1e1 12271 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (0 + 1) = 1) |
11 | 10 | oveq1d 7368 | . . . . . 6 ⊢ (𝜑 → ((0 + 1)..^𝑀) = (1..^𝑀)) |
12 | 11 | uneq2d 4121 | . . . . 5 ⊢ (𝜑 → ({0} ∪ ((0 + 1)..^𝑀)) = ({0} ∪ (1..^𝑀))) |
13 | 8, 12 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ (1..^𝑀))) |
14 | 13 | eleq2d 2823 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ ({0} ∪ (1..^𝑀)))) |
15 | elun 4106 | . . . 4 ⊢ (𝑖 ∈ ({0} ∪ (1..^𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀))) | |
16 | elsni 4601 | . . . . . . 7 ⊢ (𝑖 ∈ {0} → 𝑖 = 0) | |
17 | fveq2 6839 | . . . . . . . . . 10 ⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) | |
18 | 17 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘0)) |
19 | iccpartgtprec.p | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
20 | 1, 19 | iccpartlt 45548 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
21 | 20 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
22 | 18, 21 | eqbrtrd 5125 | . . . . . . . 8 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
23 | 22 | ex 413 | . . . . . . 7 ⊢ (𝑖 = 0 → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
24 | 16, 23 | syl 17 | . . . . . 6 ⊢ (𝑖 ∈ {0} → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
25 | fveq2 6839 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
26 | 25 | breq1d 5113 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
27 | 26 | rspccv 3576 | . . . . . . 7 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (1..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
28 | 1, 19 | iccpartiltu 45546 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
29 | 27, 28 | syl11 33 | . . . . . 6 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
30 | 24, 29 | jaoi 855 | . . . . 5 ⊢ ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
31 | 30 | com12 32 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
32 | 15, 31 | biimtrid 241 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ({0} ∪ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
33 | 14, 32 | sylbid 239 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
34 | 33 | ralrimiv 3140 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∪ cun 3906 {csn 4584 class class class wbr 5103 ‘cfv 6493 (class class class)co 7353 0cc0 11047 1c1 11048 + caddc 11050 < clt 11185 ℕcn 12149 ℤcz 12495 ..^cfzo 13559 RePartciccp 45537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-er 8644 df-map 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-2 12212 df-n0 12410 df-z 12496 df-uz 12760 df-fz 13417 df-fzo 13560 df-iccp 45538 |
This theorem is referenced by: iccpartleu 45552 |
Copyright terms: Public domain | W3C validator |