| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartltu | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| Ref | Expression |
|---|---|
| iccpartltu | ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | 0zd 12541 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ∈ ℤ) | |
| 3 | nnz 12550 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 4 | nngt0 12217 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
| 5 | 2, 3, 4 | 3jca 1128 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
| 6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
| 7 | fzopred 47323 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) |
| 9 | 0p1e1 12303 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (0 + 1) = 1) |
| 11 | 10 | oveq1d 7402 | . . . . . 6 ⊢ (𝜑 → ((0 + 1)..^𝑀) = (1..^𝑀)) |
| 12 | 11 | uneq2d 4131 | . . . . 5 ⊢ (𝜑 → ({0} ∪ ((0 + 1)..^𝑀)) = ({0} ∪ (1..^𝑀))) |
| 13 | 8, 12 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ (1..^𝑀))) |
| 14 | 13 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ ({0} ∪ (1..^𝑀)))) |
| 15 | elun 4116 | . . . 4 ⊢ (𝑖 ∈ ({0} ∪ (1..^𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀))) | |
| 16 | elsni 4606 | . . . . . . 7 ⊢ (𝑖 ∈ {0} → 𝑖 = 0) | |
| 17 | fveq2 6858 | . . . . . . . . . 10 ⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) | |
| 18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘0)) |
| 19 | iccpartgtprec.p | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 20 | 1, 19 | iccpartlt 47425 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
| 21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
| 22 | 18, 21 | eqbrtrd 5129 | . . . . . . . 8 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
| 23 | 22 | ex 412 | . . . . . . 7 ⊢ (𝑖 = 0 → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 24 | 16, 23 | syl 17 | . . . . . 6 ⊢ (𝑖 ∈ {0} → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 25 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
| 26 | 25 | breq1d 5117 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 27 | 26 | rspccv 3585 | . . . . . . 7 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (1..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 28 | 1, 19 | iccpartiltu 47423 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
| 29 | 27, 28 | syl11 33 | . . . . . 6 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 30 | 24, 29 | jaoi 857 | . . . . 5 ⊢ ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 31 | 30 | com12 32 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 32 | 15, 31 | biimtrid 242 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ({0} ∪ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 33 | 14, 32 | sylbid 240 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 34 | 33 | ralrimiv 3124 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3912 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ℕcn 12186 ℤcz 12529 ..^cfzo 13615 RePartciccp 47414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-iccp 47415 |
| This theorem is referenced by: iccpartleu 47429 |
| Copyright terms: Public domain | W3C validator |