![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartltu | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartltu | ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 0zd 11804 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ∈ ℤ) | |
3 | nnz 11816 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
4 | nngt0 11470 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
5 | 2, 3, 4 | 3jca 1109 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
7 | fzopred 42958 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) |
9 | 0p1e1 11568 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (0 + 1) = 1) |
11 | 10 | oveq1d 6990 | . . . . . 6 ⊢ (𝜑 → ((0 + 1)..^𝑀) = (1..^𝑀)) |
12 | 11 | uneq2d 4023 | . . . . 5 ⊢ (𝜑 → ({0} ∪ ((0 + 1)..^𝑀)) = ({0} ∪ (1..^𝑀))) |
13 | 8, 12 | eqtrd 2809 | . . . 4 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ (1..^𝑀))) |
14 | 13 | eleq2d 2846 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ ({0} ∪ (1..^𝑀)))) |
15 | elun 4009 | . . . 4 ⊢ (𝑖 ∈ ({0} ∪ (1..^𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀))) | |
16 | elsni 4453 | . . . . . . 7 ⊢ (𝑖 ∈ {0} → 𝑖 = 0) | |
17 | fveq2 6497 | . . . . . . . . . 10 ⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) | |
18 | 17 | adantr 473 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘0)) |
19 | iccpartgtprec.p | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
20 | 1, 19 | iccpartlt 42986 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
21 | 20 | adantl 474 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
22 | 18, 21 | eqbrtrd 4948 | . . . . . . . 8 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
23 | 22 | ex 405 | . . . . . . 7 ⊢ (𝑖 = 0 → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
24 | 16, 23 | syl 17 | . . . . . 6 ⊢ (𝑖 ∈ {0} → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
25 | fveq2 6497 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
26 | 25 | breq1d 4936 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
27 | 26 | rspccv 3527 | . . . . . . 7 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (1..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
28 | 1, 19 | iccpartiltu 42984 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
29 | 27, 28 | syl11 33 | . . . . . 6 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
30 | 24, 29 | jaoi 844 | . . . . 5 ⊢ ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
31 | 30 | com12 32 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
32 | 15, 31 | syl5bi 234 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ({0} ∪ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
33 | 14, 32 | sylbid 232 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
34 | 33 | ralrimiv 3126 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 834 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ∪ cun 3822 {csn 4436 class class class wbr 4926 ‘cfv 6186 (class class class)co 6975 0cc0 10334 1c1 10335 + caddc 10337 < clt 10473 ℕcn 11438 ℤcz 11792 ..^cfzo 12848 RePartciccp 42975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-map 8207 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-n0 11707 df-z 11793 df-uz 12058 df-fz 12708 df-fzo 12849 df-iccp 42976 |
This theorem is referenced by: iccpartleu 42990 |
Copyright terms: Public domain | W3C validator |