Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartltu Structured version   Visualization version   GIF version

Theorem iccpartltu 47535
Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartltu (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃𝑀))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartltu
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 0zd 12480 . . . . . . . 8 (𝑀 ∈ ℕ → 0 ∈ ℤ)
3 nnz 12489 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
4 nngt0 12156 . . . . . . . 8 (𝑀 ∈ ℕ → 0 < 𝑀)
52, 3, 43jca 1128 . . . . . . 7 (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
61, 5syl 17 . . . . . 6 (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
7 fzopred 47432 . . . . . 6 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀)))
86, 7syl 17 . . . . 5 (𝜑 → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀)))
9 0p1e1 12242 . . . . . . . 8 (0 + 1) = 1
109a1i 11 . . . . . . 7 (𝜑 → (0 + 1) = 1)
1110oveq1d 7361 . . . . . 6 (𝜑 → ((0 + 1)..^𝑀) = (1..^𝑀))
1211uneq2d 4115 . . . . 5 (𝜑 → ({0} ∪ ((0 + 1)..^𝑀)) = ({0} ∪ (1..^𝑀)))
138, 12eqtrd 2766 . . . 4 (𝜑 → (0..^𝑀) = ({0} ∪ (1..^𝑀)))
1413eleq2d 2817 . . 3 (𝜑 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ ({0} ∪ (1..^𝑀))))
15 elun 4100 . . . 4 (𝑖 ∈ ({0} ∪ (1..^𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)))
16 elsni 4590 . . . . . . 7 (𝑖 ∈ {0} → 𝑖 = 0)
17 fveq2 6822 . . . . . . . . . 10 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
1817adantr 480 . . . . . . . . 9 ((𝑖 = 0 ∧ 𝜑) → (𝑃𝑖) = (𝑃‘0))
19 iccpartgtprec.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
201, 19iccpartlt 47534 . . . . . . . . . 10 (𝜑 → (𝑃‘0) < (𝑃𝑀))
2120adantl 481 . . . . . . . . 9 ((𝑖 = 0 ∧ 𝜑) → (𝑃‘0) < (𝑃𝑀))
2218, 21eqbrtrd 5111 . . . . . . . 8 ((𝑖 = 0 ∧ 𝜑) → (𝑃𝑖) < (𝑃𝑀))
2322ex 412 . . . . . . 7 (𝑖 = 0 → (𝜑 → (𝑃𝑖) < (𝑃𝑀)))
2416, 23syl 17 . . . . . 6 (𝑖 ∈ {0} → (𝜑 → (𝑃𝑖) < (𝑃𝑀)))
25 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
2625breq1d 5099 . . . . . . . 8 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
2726rspccv 3569 . . . . . . 7 (∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑖 ∈ (1..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
281, 19iccpartiltu 47532 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀))
2927, 28syl11 33 . . . . . 6 (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃𝑖) < (𝑃𝑀)))
3024, 29jaoi 857 . . . . 5 ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝜑 → (𝑃𝑖) < (𝑃𝑀)))
3130com12 32 . . . 4 (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀)))
3215, 31biimtrid 242 . . 3 (𝜑 → (𝑖 ∈ ({0} ∪ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀)))
3314, 32sylbid 240 . 2 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
3433ralrimiv 3123 1 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cun 3895  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cn 12125  cz 12468  ..^cfzo 13554  RePartciccp 47523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-iccp 47524
This theorem is referenced by:  iccpartleu  47538
  Copyright terms: Public domain W3C validator