Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartltu | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartltu | ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 0zd 12188 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ∈ ℤ) | |
3 | nnz 12199 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
4 | nngt0 11861 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
5 | 2, 3, 4 | 3jca 1130 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
7 | fzopred 44487 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ ((0 + 1)..^𝑀))) |
9 | 0p1e1 11952 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (0 + 1) = 1) |
11 | 10 | oveq1d 7228 | . . . . . 6 ⊢ (𝜑 → ((0 + 1)..^𝑀) = (1..^𝑀)) |
12 | 11 | uneq2d 4077 | . . . . 5 ⊢ (𝜑 → ({0} ∪ ((0 + 1)..^𝑀)) = ({0} ∪ (1..^𝑀))) |
13 | 8, 12 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → (0..^𝑀) = ({0} ∪ (1..^𝑀))) |
14 | 13 | eleq2d 2823 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ ({0} ∪ (1..^𝑀)))) |
15 | elun 4063 | . . . 4 ⊢ (𝑖 ∈ ({0} ∪ (1..^𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀))) | |
16 | elsni 4558 | . . . . . . 7 ⊢ (𝑖 ∈ {0} → 𝑖 = 0) | |
17 | fveq2 6717 | . . . . . . . . . 10 ⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) | |
18 | 17 | adantr 484 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘0)) |
19 | iccpartgtprec.p | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
20 | 1, 19 | iccpartlt 44549 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
21 | 20 | adantl 485 | . . . . . . . . 9 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
22 | 18, 21 | eqbrtrd 5075 | . . . . . . . 8 ⊢ ((𝑖 = 0 ∧ 𝜑) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
23 | 22 | ex 416 | . . . . . . 7 ⊢ (𝑖 = 0 → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
24 | 16, 23 | syl 17 | . . . . . 6 ⊢ (𝑖 ∈ {0} → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
25 | fveq2 6717 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
26 | 25 | breq1d 5063 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
27 | 26 | rspccv 3534 | . . . . . . 7 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (1..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
28 | 1, 19 | iccpartiltu 44547 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
29 | 27, 28 | syl11 33 | . . . . . 6 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
30 | 24, 29 | jaoi 857 | . . . . 5 ⊢ ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
31 | 30 | com12 32 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
32 | 15, 31 | syl5bi 245 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ({0} ∪ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
33 | 14, 32 | sylbid 243 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
34 | 33 | ralrimiv 3104 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∪ cun 3864 {csn 4541 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 0cc0 10729 1c1 10730 + caddc 10732 < clt 10867 ℕcn 11830 ℤcz 12176 ..^cfzo 13238 RePartciccp 44538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-iccp 44539 |
This theorem is referenced by: iccpartleu 44553 |
Copyright terms: Public domain | W3C validator |