MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqcl Structured version   Visualization version   GIF version

Theorem sqcl 13477
Description: Closure of square. (Contributed by NM, 10-Aug-1999.)
Assertion
Ref Expression
sqcl (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)

Proof of Theorem sqcl
StepHypRef Expression
1 sqval 13474 . 2 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
2 mulcl 10613 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
32anidms 567 . 2 (𝐴 ∈ ℂ → (𝐴 · 𝐴) ∈ ℂ)
41, 3eqeltrd 2917 1 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  (class class class)co 7151  cc 10527   · cmul 10534  2c2 11684  cexp 13422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13363  df-exp 13423
This theorem is referenced by:  sqcld  13501  sqcli  13537  subsq  13565  binom2sub  13574  binom3  13578  zesq  13580  discr  13594  mulsubdivbinom2  13615  muldivbinom2  13616  bpoly2  15404  bpoly3  15405  bpoly4  15406  fsumcube  15407  ef4p  15459  efi4p  15483  pythagtriplem1  16146  iaa  24832  tanarg  25118  asinlem  25362  asinlem2  25363  asinlem3a  25364  asinlem3  25365  asinf  25366  atandm4  25373  asinneg  25380  efiasin  25382  sinasin  25383  asinbnd  25393  cosasin  25398  bndatandm  25423  atans2  25425  addsq2reu  25933  addsqrexnreu  25935  logdivsum  26026  log2sumbnd  26037  sinccvglem  32802  dvasin  34848  dvacos  34849  areacirclem1  34852  lhe4.4ex1a  40529  ichexmpl2  43467
  Copyright terms: Public domain W3C validator