MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval Structured version   Visualization version   GIF version

Theorem ipval 30632
Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑁   𝑆,𝑘   𝑈,𝑘   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑃(𝑘)

Proof of Theorem ipval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . . . 5 𝑁 = (normCV𝑈)
5 dipfval.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5dipfval 30631 . . . 4 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
76oveqd 7404 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑃𝐵) = (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵))
8 fvoveq1 7410 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))))
98oveq1d 7402 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2))
109oveq2d 7403 . . . . . 6 (𝑥 = 𝐴 → ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)))
1110sumeq2sdv 15669 . . . . 5 (𝑥 = 𝐴 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)))
1211oveq1d 7402 . . . 4 (𝑥 = 𝐴 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
13 oveq2 7395 . . . . . . . . . 10 (𝑦 = 𝐵 → ((i↑𝑘)𝑆𝑦) = ((i↑𝑘)𝑆𝐵))
1413oveq2d 7403 . . . . . . . . 9 (𝑦 = 𝐵 → (𝐴𝐺((i↑𝑘)𝑆𝑦)) = (𝐴𝐺((i↑𝑘)𝑆𝐵)))
1514fveq2d 6862 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))))
1615oveq1d 7402 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2))
1716oveq2d 7403 . . . . . 6 (𝑦 = 𝐵 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)))
1817sumeq2sdv 15669 . . . . 5 (𝑦 = 𝐵 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)))
1918oveq1d 7402 . . . 4 (𝑦 = 𝐵 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
20 eqid 2729 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
21 ovex 7420 . . . 4 𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) ∈ V
2212, 19, 20, 21ovmpo 7549 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
237, 22sylan9eq 2784 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
24233impb 1114 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cmpo 7389  1c1 11069  ici 11070   · cmul 11073   / cdiv 11835  2c2 12241  4c4 12243  ...cfz 13468  cexp 14026  Σcsu 15652  NrmCVeccnv 30513   +𝑣 cpv 30514  BaseSetcba 30515   ·𝑠OLD cns 30516  normCVcnmcv 30519  ·𝑖OLDcdip 30629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-sum 15653  df-dip 30630
This theorem is referenced by:  ipval2  30636  dipcl  30641  ipf  30642
  Copyright terms: Public domain W3C validator