MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval Structured version   Visualization version   GIF version

Theorem ipval 29943
Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
dipfval.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
dipfval.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
dipfval.6 𝑁 = (normCVβ€˜π‘ˆ)
dipfval.7 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
Assertion
Ref Expression
ipval ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝑃𝐡) = (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)) / 4))
Distinct variable groups:   π‘˜,𝐺   π‘˜,𝑁   𝑆,π‘˜   π‘ˆ,π‘˜   𝐴,π‘˜   𝐡,π‘˜   π‘˜,𝑋
Allowed substitution hint:   𝑃(π‘˜)

Proof of Theorem ipval
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
2 dipfval.2 . . . . 5 𝐺 = ( +𝑣 β€˜π‘ˆ)
3 dipfval.4 . . . . 5 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
4 dipfval.6 . . . . 5 𝑁 = (normCVβ€˜π‘ˆ)
5 dipfval.7 . . . . 5 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
61, 2, 3, 4, 5dipfval 29942 . . . 4 (π‘ˆ ∈ NrmCVec β†’ 𝑃 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4)))
76oveqd 7422 . . 3 (π‘ˆ ∈ NrmCVec β†’ (𝐴𝑃𝐡) = (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4))𝐡))
8 fvoveq1 7428 . . . . . . . 8 (π‘₯ = 𝐴 β†’ (π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦))) = (π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦))))
98oveq1d 7420 . . . . . . 7 (π‘₯ = 𝐴 β†’ ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2) = ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2))
109oveq2d 7421 . . . . . 6 (π‘₯ = 𝐴 β†’ ((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) = ((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)))
1110sumeq2sdv 15646 . . . . 5 (π‘₯ = 𝐴 β†’ Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) = Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)))
1211oveq1d 7420 . . . 4 (π‘₯ = 𝐴 β†’ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4) = (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4))
13 oveq2 7413 . . . . . . . . . 10 (𝑦 = 𝐡 β†’ ((iβ†‘π‘˜)𝑆𝑦) = ((iβ†‘π‘˜)𝑆𝐡))
1413oveq2d 7421 . . . . . . . . 9 (𝑦 = 𝐡 β†’ (𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)) = (𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))
1514fveq2d 6892 . . . . . . . 8 (𝑦 = 𝐡 β†’ (π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦))) = (π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡))))
1615oveq1d 7420 . . . . . . 7 (𝑦 = 𝐡 β†’ ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2) = ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2))
1716oveq2d 7421 . . . . . 6 (𝑦 = 𝐡 β†’ ((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) = ((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)))
1817sumeq2sdv 15646 . . . . 5 (𝑦 = 𝐡 β†’ Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) = Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)))
1918oveq1d 7420 . . . 4 (𝑦 = 𝐡 β†’ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4) = (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)) / 4))
20 eqid 2732 . . . 4 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4))
21 ovex 7438 . . . 4 (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)) / 4) ∈ V
2212, 19, 20, 21ovmpo 7564 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(π‘₯𝐺((iβ†‘π‘˜)𝑆𝑦)))↑2)) / 4))𝐡) = (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)) / 4))
237, 22sylan9eq 2792 . 2 ((π‘ˆ ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝑃𝐡) = (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)) / 4))
24233impb 1115 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝑃𝐡) = (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· ((π‘β€˜(𝐴𝐺((iβ†‘π‘˜)𝑆𝐡)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1c1 11107  ici 11108   Β· cmul 11111   / cdiv 11867  2c2 12263  4c4 12265  ...cfz 13480  β†‘cexp 14023  Ξ£csu 15628  NrmCVeccnv 29824   +𝑣 cpv 29825  BaseSetcba 29826   ·𝑠OLD cns 29827  normCVcnmcv 29830  Β·π‘–OLDcdip 29940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-sum 15629  df-dip 29941
This theorem is referenced by:  ipval2  29947  dipcl  29952  ipf  29953
  Copyright terms: Public domain W3C validator