![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipval | Structured version Visualization version GIF version |
Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
ipval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | dipfval.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | dipfval.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | dipfval.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | dipfval.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dipfval 30734 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) |
7 | 6 | oveqd 7465 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴𝑃𝐵) = (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵)) |
8 | fvoveq1 7471 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))) | |
9 | 8 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) |
10 | 9 | oveq2d 7464 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
11 | 10 | sumeq2sdv 15751 | . . . . 5 ⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2))) |
12 | 11 | oveq1d 7463 | . . . 4 ⊢ (𝑥 = 𝐴 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) |
13 | oveq2 7456 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → ((i↑𝑘)𝑆𝑦) = ((i↑𝑘)𝑆𝐵)) | |
14 | 13 | oveq2d 7464 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (𝐴𝐺((i↑𝑘)𝑆𝑦)) = (𝐴𝐺((i↑𝑘)𝑆𝐵))) |
15 | 14 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))) |
16 | 15 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) |
17 | 16 | oveq2d 7464 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2))) |
18 | 17 | sumeq2sdv 15751 | . . . . 5 ⊢ (𝑦 = 𝐵 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2))) |
19 | 18 | oveq1d 7463 | . . . 4 ⊢ (𝑦 = 𝐵 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) |
20 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) | |
21 | ovex 7481 | . . . 4 ⊢ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) ∈ V | |
22 | 12, 19, 20, 21 | ovmpo 7610 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) |
23 | 7, 22 | sylan9eq 2800 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) |
24 | 23 | 3impb 1115 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1c1 11185 ici 11186 · cmul 11189 / cdiv 11947 2c2 12348 4c4 12350 ...cfz 13567 ↑cexp 14112 Σcsu 15734 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 normCVcnmcv 30622 ·𝑖OLDcdip 30732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-sum 15735 df-dip 30733 |
This theorem is referenced by: ipval2 30739 dipcl 30744 ipf 30745 |
Copyright terms: Public domain | W3C validator |