MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval Structured version   Visualization version   GIF version

Theorem ipval 30735
Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑁   𝑆,𝑘   𝑈,𝑘   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑃(𝑘)

Proof of Theorem ipval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . . . 5 𝑁 = (normCV𝑈)
5 dipfval.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5dipfval 30734 . . . 4 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)))
76oveqd 7465 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑃𝐵) = (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵))
8 fvoveq1 7471 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))))
98oveq1d 7463 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2))
109oveq2d 7464 . . . . . 6 (𝑥 = 𝐴 → ((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)))
1110sumeq2sdv 15751 . . . . 5 (𝑥 = 𝐴 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)))
1211oveq1d 7463 . . . 4 (𝑥 = 𝐴 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
13 oveq2 7456 . . . . . . . . . 10 (𝑦 = 𝐵 → ((i↑𝑘)𝑆𝑦) = ((i↑𝑘)𝑆𝐵))
1413oveq2d 7464 . . . . . . . . 9 (𝑦 = 𝐵 → (𝐴𝐺((i↑𝑘)𝑆𝑦)) = (𝐴𝐺((i↑𝑘)𝑆𝐵)))
1514fveq2d 6924 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦))) = (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))))
1615oveq1d 7463 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2))
1716oveq2d 7464 . . . . . 6 (𝑦 = 𝐵 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)))
1817sumeq2sdv 15751 . . . . 5 (𝑦 = 𝐵 → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)))
1918oveq1d 7463 . . . 4 (𝑦 = 𝐵 → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
20 eqid 2740 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))
21 ovex 7481 . . . 4 𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) ∈ V
2212, 19, 20, 21ovmpo 7610 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
237, 22sylan9eq 2800 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
24233impb 1115 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cmpo 7450  1c1 11185  ici 11186   · cmul 11189   / cdiv 11947  2c2 12348  4c4 12350  ...cfz 13567  cexp 14112  Σcsu 15734  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  normCVcnmcv 30622  ·𝑖OLDcdip 30732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-sum 15735  df-dip 30733
This theorem is referenced by:  ipval2  30739  dipcl  30744  ipf  30745
  Copyright terms: Public domain W3C validator