![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipf | Structured version Visualization version GIF version |
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipcl.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
ipf | ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipcl.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2740 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2740 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2740 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | ipcl.7 | . . . . . . 7 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | ipval 30735 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃𝑦) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) |
7 | 1, 5 | dipcl 30744 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃𝑦) ∈ ℂ) |
8 | 6, 7 | eqeltrrd 2845 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ) |
9 | 8 | 3expib 1122 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ)) |
10 | 9 | ralrimivv 3206 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ) |
11 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) | |
12 | 11 | fmpo 8109 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ) |
13 | 10, 12 | sylib 218 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ) |
14 | 1, 2, 3, 4, 5 | dipfval 30734 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4))) |
15 | 14 | feq1d 6732 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑃:(𝑋 × 𝑋)⟶ℂ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)) |
16 | 13, 15 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℂcc 11182 1c1 11185 ici 11186 · cmul 11189 / cdiv 11947 2c2 12348 4c4 12350 ...cfz 13567 ↑cexp 14112 Σcsu 15734 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 normCVcnmcv 30622 ·𝑖OLDcdip 30732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-grpo 30525 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 df-dip 30733 |
This theorem is referenced by: hlipf 30942 hhip 31209 |
Copyright terms: Public domain | W3C validator |