MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipf Structured version   Visualization version   GIF version

Theorem ipf 30649
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipf (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ)

Proof of Theorem ipf
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 eqid 2730 . . . . . . 7 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2730 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2730 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30639 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑃𝑦) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
71, 5dipcl 30648 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑃𝑦) ∈ ℂ)
86, 7eqeltrrd 2830 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ)
983expib 1122 . . . 4 (𝑈 ∈ NrmCVec → ((𝑥𝑋𝑦𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ))
109ralrimivv 3179 . . 3 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ)
11 eqid 2730 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
1211fmpo 8050 . . 3 (∀𝑥𝑋𝑦𝑋𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)
1310, 12sylib 218 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)
141, 2, 3, 4, 5dipfval 30638 . . 3 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)))
1514feq1d 6673 . 2 (𝑈 ∈ NrmCVec → (𝑃:(𝑋 × 𝑋)⟶ℂ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ))
1613, 15mpbird 257 1 (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3045   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  cc 11073  1c1 11076  ici 11077   · cmul 11080   / cdiv 11842  2c2 12248  4c4 12250  ...cfz 13475  cexp 14033  Σcsu 15659  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  normCVcnmcv 30526  ·𝑖OLDcdip 30636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-grpo 30429  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-dip 30637
This theorem is referenced by:  hlipf  30846  hhip  31113
  Copyright terms: Public domain W3C validator