![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipf | Structured version Visualization version GIF version |
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipcl.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
ipf | ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipcl.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2736 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2736 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2736 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | ipcl.7 | . . . . . . 7 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | ipval 29353 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃𝑦) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) |
7 | 1, 5 | dipcl 29362 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃𝑦) ∈ ℂ) |
8 | 6, 7 | eqeltrrd 2838 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ) |
9 | 8 | 3expib 1121 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ)) |
10 | 9 | ralrimivv 3191 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ) |
11 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)) | |
12 | 11 | fmpo 7976 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4) ∈ ℂ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ) |
13 | 10, 12 | sylib 217 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ) |
14 | 1, 2, 3, 4, 5 | dipfval 29352 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4))) |
15 | 14 | feq1d 6636 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑃:(𝑋 × 𝑋)⟶ℂ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)) |
16 | 13, 15 | mpbird 256 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 × cxp 5618 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 ℂcc 10970 1c1 10973 ici 10974 · cmul 10977 / cdiv 11733 2c2 12129 4c4 12131 ...cfz 13340 ↑cexp 13883 Σcsu 15496 NrmCVeccnv 29234 +𝑣 cpv 29235 BaseSetcba 29236 ·𝑠OLD cns 29237 normCVcnmcv 29240 ·𝑖OLDcdip 29350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-grpo 29143 df-ablo 29195 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-nmcv 29250 df-dip 29351 |
This theorem is referenced by: hlipf 29560 hhip 29827 |
Copyright terms: Public domain | W3C validator |