MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipf Structured version   Visualization version   GIF version

Theorem ipf 30646
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipf (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ)

Proof of Theorem ipf
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 eqid 2726 . . . . . . 7 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2726 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2726 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30636 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑃𝑦) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
71, 5dipcl 30645 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑃𝑦) ∈ ℂ)
86, 7eqeltrrd 2827 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ)
983expib 1119 . . . 4 (𝑈 ∈ NrmCVec → ((𝑥𝑋𝑦𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ))
109ralrimivv 3189 . . 3 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ)
11 eqid 2726 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
1211fmpo 8082 . . 3 (∀𝑥𝑋𝑦𝑋𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)
1310, 12sylib 217 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)
141, 2, 3, 4, 5dipfval 30635 . . 3 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)))
1514feq1d 6713 . 2 (𝑈 ∈ NrmCVec → (𝑃:(𝑋 × 𝑋)⟶ℂ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ))
1613, 15mpbird 256 1 (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  wral 3051   × cxp 5680  wf 6550  cfv 6554  (class class class)co 7424  cmpo 7426  cc 11156  1c1 11159  ici 11160   · cmul 11163   / cdiv 11921  2c2 12319  4c4 12321  ...cfz 13538  cexp 14081  Σcsu 15690  NrmCVeccnv 30517   +𝑣 cpv 30518  BaseSetcba 30519   ·𝑠OLD cns 30520  normCVcnmcv 30523  ·𝑖OLDcdip 30633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-grpo 30426  df-ablo 30478  df-vc 30492  df-nv 30525  df-va 30528  df-ba 30529  df-sm 30530  df-0v 30531  df-nmcv 30533  df-dip 30634
This theorem is referenced by:  hlipf  30843  hhip  31110
  Copyright terms: Public domain W3C validator