![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipf | Structured version Visualization version GIF version |
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipcl.1 | β’ π = (BaseSetβπ) |
ipcl.7 | β’ π = (Β·πOLDβπ) |
Ref | Expression |
---|---|
ipf | β’ (π β NrmCVec β π:(π Γ π)βΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipcl.1 | . . . . . . 7 β’ π = (BaseSetβπ) | |
2 | eqid 2727 | . . . . . . 7 β’ ( +π£ βπ) = ( +π£ βπ) | |
3 | eqid 2727 | . . . . . . 7 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | eqid 2727 | . . . . . . 7 β’ (normCVβπ) = (normCVβπ) | |
5 | ipcl.7 | . . . . . . 7 β’ π = (Β·πOLDβπ) | |
6 | 1, 2, 3, 4, 5 | ipval 30506 | . . . . . 6 β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (π₯ππ¦) = (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)) |
7 | 1, 5 | dipcl 30515 | . . . . . 6 β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (π₯ππ¦) β β) |
8 | 6, 7 | eqeltrrd 2829 | . . . . 5 β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β) |
9 | 8 | 3expib 1120 | . . . 4 β’ (π β NrmCVec β ((π₯ β π β§ π¦ β π) β (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β)) |
10 | 9 | ralrimivv 3193 | . . 3 β’ (π β NrmCVec β βπ₯ β π βπ¦ β π (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β) |
11 | eqid 2727 | . . . 4 β’ (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)) = (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)) | |
12 | 11 | fmpo 8066 | . . 3 β’ (βπ₯ β π βπ¦ β π (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β β (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)):(π Γ π)βΆβ) |
13 | 10, 12 | sylib 217 | . 2 β’ (π β NrmCVec β (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)):(π Γ π)βΆβ) |
14 | 1, 2, 3, 4, 5 | dipfval 30505 | . . 3 β’ (π β NrmCVec β π = (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4))) |
15 | 14 | feq1d 6701 | . 2 β’ (π β NrmCVec β (π:(π Γ π)βΆβ β (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)):(π Γ π)βΆβ)) |
16 | 13, 15 | mpbird 257 | 1 β’ (π β NrmCVec β π:(π Γ π)βΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1534 β wcel 2099 βwral 3056 Γ cxp 5670 βΆwf 6538 βcfv 6542 (class class class)co 7414 β cmpo 7416 βcc 11130 1c1 11133 ici 11134 Β· cmul 11137 / cdiv 11895 2c2 12291 4c4 12293 ...cfz 13510 βcexp 14052 Ξ£csu 15658 NrmCVeccnv 30387 +π£ cpv 30388 BaseSetcba 30389 Β·π OLD cns 30390 normCVcnmcv 30393 Β·πOLDcdip 30503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 df-grpo 30296 df-ablo 30348 df-vc 30362 df-nv 30395 df-va 30398 df-ba 30399 df-sm 30400 df-0v 30401 df-nmcv 30403 df-dip 30504 |
This theorem is referenced by: hlipf 30713 hhip 30980 |
Copyright terms: Public domain | W3C validator |