![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipf | Structured version Visualization version GIF version |
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipcl.1 | β’ π = (BaseSetβπ) |
ipcl.7 | β’ π = (Β·πOLDβπ) |
Ref | Expression |
---|---|
ipf | β’ (π β NrmCVec β π:(π Γ π)βΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipcl.1 | . . . . . . 7 β’ π = (BaseSetβπ) | |
2 | eqid 2732 | . . . . . . 7 β’ ( +π£ βπ) = ( +π£ βπ) | |
3 | eqid 2732 | . . . . . . 7 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | eqid 2732 | . . . . . . 7 β’ (normCVβπ) = (normCVβπ) | |
5 | ipcl.7 | . . . . . . 7 β’ π = (Β·πOLDβπ) | |
6 | 1, 2, 3, 4, 5 | ipval 29951 | . . . . . 6 β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (π₯ππ¦) = (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)) |
7 | 1, 5 | dipcl 29960 | . . . . . 6 β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (π₯ππ¦) β β) |
8 | 6, 7 | eqeltrrd 2834 | . . . . 5 β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β) |
9 | 8 | 3expib 1122 | . . . 4 β’ (π β NrmCVec β ((π₯ β π β§ π¦ β π) β (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β)) |
10 | 9 | ralrimivv 3198 | . . 3 β’ (π β NrmCVec β βπ₯ β π βπ¦ β π (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β) |
11 | eqid 2732 | . . . 4 β’ (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)) = (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)) | |
12 | 11 | fmpo 8053 | . . 3 β’ (βπ₯ β π βπ¦ β π (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4) β β β (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)):(π Γ π)βΆβ) |
13 | 10, 12 | sylib 217 | . 2 β’ (π β NrmCVec β (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)):(π Γ π)βΆβ) |
14 | 1, 2, 3, 4, 5 | dipfval 29950 | . . 3 β’ (π β NrmCVec β π = (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4))) |
15 | 14 | feq1d 6702 | . 2 β’ (π β NrmCVec β (π:(π Γ π)βΆβ β (π₯ β π, π¦ β π β¦ (Ξ£π β (1...4)((iβπ) Β· (((normCVβπ)β(π₯( +π£ βπ)((iβπ)( Β·π OLD βπ)π¦)))β2)) / 4)):(π Γ π)βΆβ)) |
16 | 13, 15 | mpbird 256 | 1 β’ (π β NrmCVec β π:(π Γ π)βΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7408 β cmpo 7410 βcc 11107 1c1 11110 ici 11111 Β· cmul 11114 / cdiv 11870 2c2 12266 4c4 12268 ...cfz 13483 βcexp 14026 Ξ£csu 15631 NrmCVeccnv 29832 +π£ cpv 29833 BaseSetcba 29834 Β·π OLD cns 29835 normCVcnmcv 29838 Β·πOLDcdip 29948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 df-grpo 29741 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-nmcv 29848 df-dip 29949 |
This theorem is referenced by: hlipf 30158 hhip 30425 |
Copyright terms: Public domain | W3C validator |