MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcl Structured version   Visualization version   GIF version

Theorem dipcl 30648
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)

Proof of Theorem dipcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 eqid 2730 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2730 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2730 . . 3 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30639 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4))
7 fzfid 13945 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1...4) ∈ Fin)
8 ax-icn 11134 . . . . . . 7 i ∈ ℂ
9 elfznn 13521 . . . . . . . 8 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
109nnnn0d 12510 . . . . . . 7 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0)
11 expcl 14051 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
128, 10, 11sylancr 587 . . . . . 6 (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ)
1312adantl 481 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
141, 2, 3, 4, 5ipval2lem4 30642 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1512, 14sylan2 593 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1613, 15mulcld 11201 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
177, 16fsumcl 15706 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
18 4cn 12278 . . . 4 4 ∈ ℂ
19 4ne0 12301 . . . 4 4 ≠ 0
20 divcl 11850 . . . 4 ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2118, 19, 20mp3an23 1455 . . 3 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2217, 21syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
236, 22eqeltrd 2829 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  ici 11077   · cmul 11080   / cdiv 11842  2c2 12248  4c4 12250  0cn0 12449  ...cfz 13475  cexp 14033  Σcsu 15659  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  normCVcnmcv 30526  ·𝑖OLDcdip 30636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-grpo 30429  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-dip 30637
This theorem is referenced by:  ipf  30649  ipipcj  30651  ip1ilem  30762  ip2i  30764  ipasslem1  30767  ipasslem2  30768  ipasslem4  30770  ipasslem5  30771  ipasslem7  30772  ipasslem8  30773  ipasslem9  30774  ipasslem10  30775  ipasslem11  30776  dipdi  30779  ip2dii  30780  dipassr  30782  dipsubdir  30784  dipsubdi  30785  pythi  30786  siilem1  30787  siilem2  30788  siii  30789  ipblnfi  30791  ip2eqi  30792  htthlem  30853
  Copyright terms: Public domain W3C validator