![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipcl | Structured version Visualization version GIF version |
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipcl.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipcl.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2727 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2727 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2727 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | ipcl.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | ipval 30500 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4)) |
7 | fzfid 13962 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (1...4) ∈ Fin) | |
8 | ax-icn 11189 | . . . . . . 7 ⊢ i ∈ ℂ | |
9 | elfznn 13554 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
10 | 9 | nnnn0d 12554 | . . . . . . 7 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0) |
11 | expcl 14068 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
12 | 8, 10, 11 | sylancr 586 | . . . . . 6 ⊢ (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ) |
13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
14 | 1, 2, 3, 4, 5 | ipval2lem4 30503 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
15 | 12, 14 | sylan2 592 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
16 | 13, 15 | mulcld 11256 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) |
17 | 7, 16 | fsumcl 15703 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) |
18 | 4cn 12319 | . . . 4 ⊢ 4 ∈ ℂ | |
19 | 4ne0 12342 | . . . 4 ⊢ 4 ≠ 0 | |
20 | divcl 11900 | . . . 4 ⊢ ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) | |
21 | 18, 19, 20 | mp3an23 1450 | . . 3 ⊢ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) |
22 | 17, 21 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) |
23 | 6, 22 | eqeltrd 2828 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 0cc0 11130 1c1 11131 ici 11132 · cmul 11135 / cdiv 11893 2c2 12289 4c4 12291 ℕ0cn0 12494 ...cfz 13508 ↑cexp 14050 Σcsu 15656 NrmCVeccnv 30381 +𝑣 cpv 30382 BaseSetcba 30383 ·𝑠OLD cns 30384 normCVcnmcv 30387 ·𝑖OLDcdip 30497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-sum 15657 df-grpo 30290 df-ablo 30342 df-vc 30356 df-nv 30389 df-va 30392 df-ba 30393 df-sm 30394 df-0v 30395 df-nmcv 30397 df-dip 30498 |
This theorem is referenced by: ipf 30510 ipipcj 30512 ip1ilem 30623 ip2i 30625 ipasslem1 30628 ipasslem2 30629 ipasslem4 30631 ipasslem5 30632 ipasslem7 30633 ipasslem8 30634 ipasslem9 30635 ipasslem10 30636 ipasslem11 30637 dipdi 30640 ip2dii 30641 dipassr 30643 dipsubdir 30645 dipsubdi 30646 pythi 30647 siilem1 30648 siilem2 30649 siii 30650 ipblnfi 30652 ip2eqi 30653 htthlem 30714 |
Copyright terms: Public domain | W3C validator |