MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcl Structured version   Visualization version   GIF version

Theorem dipcl 30740
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)

Proof of Theorem dipcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 eqid 2734 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2734 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2734 . . 3 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30731 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4))
7 fzfid 14010 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1...4) ∈ Fin)
8 ax-icn 11211 . . . . . . 7 i ∈ ℂ
9 elfznn 13589 . . . . . . . 8 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
109nnnn0d 12584 . . . . . . 7 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0)
11 expcl 14116 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
128, 10, 11sylancr 587 . . . . . 6 (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ)
1312adantl 481 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
141, 2, 3, 4, 5ipval2lem4 30734 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1512, 14sylan2 593 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1613, 15mulcld 11278 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
177, 16fsumcl 15765 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
18 4cn 12348 . . . 4 4 ∈ ℂ
19 4ne0 12371 . . . 4 4 ≠ 0
20 divcl 11925 . . . 4 ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2118, 19, 20mp3an23 1452 . . 3 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2217, 21syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
236, 22eqeltrd 2838 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153  ici 11154   · cmul 11157   / cdiv 11917  2c2 12318  4c4 12320  0cn0 12523  ...cfz 13543  cexp 14098  Σcsu 15718  NrmCVeccnv 30612   +𝑣 cpv 30613  BaseSetcba 30614   ·𝑠OLD cns 30615  normCVcnmcv 30618  ·𝑖OLDcdip 30728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-grpo 30521  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-nmcv 30628  df-dip 30729
This theorem is referenced by:  ipf  30741  ipipcj  30743  ip1ilem  30854  ip2i  30856  ipasslem1  30859  ipasslem2  30860  ipasslem4  30862  ipasslem5  30863  ipasslem7  30864  ipasslem8  30865  ipasslem9  30866  ipasslem10  30867  ipasslem11  30868  dipdi  30871  ip2dii  30872  dipassr  30874  dipsubdir  30876  dipsubdi  30877  pythi  30878  siilem1  30879  siilem2  30880  siii  30881  ipblnfi  30883  ip2eqi  30884  htthlem  30945
  Copyright terms: Public domain W3C validator