| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dipcl | Structured version Visualization version GIF version | ||
| Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ipcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ipcl.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| Ref | Expression |
|---|---|
| dipcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2729 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 5 | ipcl.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | ipval 30647 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4)) |
| 7 | fzfid 13880 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (1...4) ∈ Fin) | |
| 8 | ax-icn 11068 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 9 | elfznn 13456 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
| 10 | 9 | nnnn0d 12445 | . . . . . . 7 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0) |
| 11 | expcl 13986 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 12 | 8, 10, 11 | sylancr 587 | . . . . . 6 ⊢ (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
| 14 | 1, 2, 3, 4, 5 | ipval2lem4 30650 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 15 | 12, 14 | sylan2 593 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 16 | 13, 15 | mulcld 11135 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) |
| 17 | 7, 16 | fsumcl 15640 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) |
| 18 | 4cn 12213 | . . . 4 ⊢ 4 ∈ ℂ | |
| 19 | 4ne0 12236 | . . . 4 ⊢ 4 ≠ 0 | |
| 20 | divcl 11785 | . . . 4 ⊢ ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) | |
| 21 | 18, 19, 20 | mp3an23 1455 | . . 3 ⊢ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) |
| 22 | 17, 21 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) |
| 23 | 6, 22 | eqeltrd 2828 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 ici 11011 · cmul 11014 / cdiv 11777 2c2 12183 4c4 12185 ℕ0cn0 12384 ...cfz 13410 ↑cexp 13968 Σcsu 15593 NrmCVeccnv 30528 +𝑣 cpv 30529 BaseSetcba 30530 ·𝑠OLD cns 30531 normCVcnmcv 30534 ·𝑖OLDcdip 30644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-grpo 30437 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-nmcv 30544 df-dip 30645 |
| This theorem is referenced by: ipf 30657 ipipcj 30659 ip1ilem 30770 ip2i 30772 ipasslem1 30775 ipasslem2 30776 ipasslem4 30778 ipasslem5 30779 ipasslem7 30780 ipasslem8 30781 ipasslem9 30782 ipasslem10 30783 ipasslem11 30784 dipdi 30787 ip2dii 30788 dipassr 30790 dipsubdir 30792 dipsubdi 30793 pythi 30794 siilem1 30795 siilem2 30796 siii 30797 ipblnfi 30799 ip2eqi 30800 htthlem 30861 |
| Copyright terms: Public domain | W3C validator |