MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcl Structured version   Visualization version   GIF version

Theorem dipcl 30744
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)

Proof of Theorem dipcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 eqid 2740 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2740 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2740 . . 3 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30735 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4))
7 fzfid 14024 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1...4) ∈ Fin)
8 ax-icn 11243 . . . . . . 7 i ∈ ℂ
9 elfznn 13613 . . . . . . . 8 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
109nnnn0d 12613 . . . . . . 7 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0)
11 expcl 14130 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
128, 10, 11sylancr 586 . . . . . 6 (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ)
1312adantl 481 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
141, 2, 3, 4, 5ipval2lem4 30738 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1512, 14sylan2 592 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1613, 15mulcld 11310 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
177, 16fsumcl 15781 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
18 4cn 12378 . . . 4 4 ∈ ℂ
19 4ne0 12401 . . . 4 4 ≠ 0
20 divcl 11955 . . . 4 ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2118, 19, 20mp3an23 1453 . . 3 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2217, 21syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
236, 22eqeltrd 2844 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  ici 11186   · cmul 11189   / cdiv 11947  2c2 12348  4c4 12350  0cn0 12553  ...cfz 13567  cexp 14112  Σcsu 15734  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  normCVcnmcv 30622  ·𝑖OLDcdip 30732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-grpo 30525  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-dip 30733
This theorem is referenced by:  ipf  30745  ipipcj  30747  ip1ilem  30858  ip2i  30860  ipasslem1  30863  ipasslem2  30864  ipasslem4  30866  ipasslem5  30867  ipasslem7  30868  ipasslem8  30869  ipasslem9  30870  ipasslem10  30871  ipasslem11  30872  dipdi  30875  ip2dii  30876  dipassr  30878  dipsubdir  30880  dipsubdi  30881  pythi  30882  siilem1  30883  siilem2  30884  siii  30885  ipblnfi  30887  ip2eqi  30888  htthlem  30949
  Copyright terms: Public domain W3C validator