| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dipcl | Structured version Visualization version GIF version | ||
| Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ipcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ipcl.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| Ref | Expression |
|---|---|
| dipcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | eqid 2730 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2730 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2730 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 5 | ipcl.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | ipval 30639 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4)) |
| 7 | fzfid 13945 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (1...4) ∈ Fin) | |
| 8 | ax-icn 11134 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 9 | elfznn 13521 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ) | |
| 10 | 9 | nnnn0d 12510 | . . . . . . 7 ⊢ (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0) |
| 11 | expcl 14051 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 12 | 8, 10, 11 | sylancr 587 | . . . . . 6 ⊢ (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ) |
| 14 | 1, 2, 3, 4, 5 | ipval2lem4 30642 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 15 | 12, 14 | sylan2 593 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 16 | 13, 15 | mulcld 11201 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) |
| 17 | 7, 16 | fsumcl 15706 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) |
| 18 | 4cn 12278 | . . . 4 ⊢ 4 ∈ ℂ | |
| 19 | 4ne0 12301 | . . . 4 ⊢ 4 ≠ 0 | |
| 20 | divcl 11850 | . . . 4 ⊢ ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) | |
| 21 | 18, 19, 20 | mp3an23 1455 | . . 3 ⊢ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) |
| 22 | 17, 21 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)((i↑𝑘)( ·𝑠OLD ‘𝑈)𝐵)))↑2)) / 4) ∈ ℂ) |
| 23 | 6, 22 | eqeltrd 2829 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 ici 11077 · cmul 11080 / cdiv 11842 2c2 12248 4c4 12250 ℕ0cn0 12449 ...cfz 13475 ↑cexp 14033 Σcsu 15659 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 ·𝑠OLD cns 30523 normCVcnmcv 30526 ·𝑖OLDcdip 30636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-grpo 30429 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 df-dip 30637 |
| This theorem is referenced by: ipf 30649 ipipcj 30651 ip1ilem 30762 ip2i 30764 ipasslem1 30767 ipasslem2 30768 ipasslem4 30770 ipasslem5 30771 ipasslem7 30772 ipasslem8 30773 ipasslem9 30774 ipasslem10 30775 ipasslem11 30776 dipdi 30779 ip2dii 30780 dipassr 30782 dipsubdir 30784 dipsubdi 30785 pythi 30786 siilem1 30787 siilem2 30788 siii 30789 ipblnfi 30791 ip2eqi 30792 htthlem 30853 |
| Copyright terms: Public domain | W3C validator |