MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcl Structured version   Visualization version   GIF version

Theorem dipcl 30509
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)

Proof of Theorem dipcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 eqid 2727 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2727 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2727 . . 3 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30500 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4))
7 fzfid 13962 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1...4) ∈ Fin)
8 ax-icn 11189 . . . . . . 7 i ∈ ℂ
9 elfznn 13554 . . . . . . . 8 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
109nnnn0d 12554 . . . . . . 7 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0)
11 expcl 14068 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
128, 10, 11sylancr 586 . . . . . 6 (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ)
1312adantl 481 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
141, 2, 3, 4, 5ipval2lem4 30503 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1512, 14sylan2 592 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1613, 15mulcld 11256 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
177, 16fsumcl 15703 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
18 4cn 12319 . . . 4 4 ∈ ℂ
19 4ne0 12342 . . . 4 4 ≠ 0
20 divcl 11900 . . . 4 ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2118, 19, 20mp3an23 1450 . . 3 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2217, 21syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
236, 22eqeltrd 2828 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  cfv 6542  (class class class)co 7414  cc 11128  0cc0 11130  1c1 11131  ici 11132   · cmul 11135   / cdiv 11893  2c2 12289  4c4 12291  0cn0 12494  ...cfz 13508  cexp 14050  Σcsu 15656  NrmCVeccnv 30381   +𝑣 cpv 30382  BaseSetcba 30383   ·𝑠OLD cns 30384  normCVcnmcv 30387  ·𝑖OLDcdip 30497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-sum 15657  df-grpo 30290  df-ablo 30342  df-vc 30356  df-nv 30389  df-va 30392  df-ba 30393  df-sm 30394  df-0v 30395  df-nmcv 30397  df-dip 30498
This theorem is referenced by:  ipf  30510  ipipcj  30512  ip1ilem  30623  ip2i  30625  ipasslem1  30628  ipasslem2  30629  ipasslem4  30631  ipasslem5  30632  ipasslem7  30633  ipasslem8  30634  ipasslem9  30635  ipasslem10  30636  ipasslem11  30637  dipdi  30640  ip2dii  30641  dipassr  30643  dipsubdir  30645  dipsubdi  30646  pythi  30647  siilem1  30648  siilem2  30649  siii  30650  ipblnfi  30652  ip2eqi  30653  htthlem  30714
  Copyright terms: Public domain W3C validator