MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcl Structured version   Visualization version   GIF version

Theorem dipcl 28495
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)

Proof of Theorem dipcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 eqid 2798 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2798 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2798 . . 3 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 28486 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4))
7 fzfid 13336 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1...4) ∈ Fin)
8 ax-icn 10585 . . . . . . 7 i ∈ ℂ
9 elfznn 12931 . . . . . . . 8 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
109nnnn0d 11943 . . . . . . 7 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ0)
11 expcl 13443 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
128, 10, 11sylancr 590 . . . . . 6 (𝑘 ∈ (1...4) → (i↑𝑘) ∈ ℂ)
1312adantl 485 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
141, 2, 3, 4, 5ipval2lem4 28489 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1512, 14sylan2 595 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1613, 15mulcld 10650 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ (1...4)) → ((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
177, 16fsumcl 15082 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
18 4cn 11710 . . . 4 4 ∈ ℂ
19 4ne0 11733 . . . 4 4 ≠ 0
20 divcl 11293 . . . 4 ((Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2118, 19, 20mp3an23 1450 . . 3 𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
2217, 21syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝐴( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝐵)))↑2)) / 4) ∈ ℂ)
236, 22eqeltrd 2890 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527  ici 10528   · cmul 10531   / cdiv 11286  2c2 11680  4c4 11682  0cn0 11885  ...cfz 12885  cexp 13425  Σcsu 15034  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  normCVcnmcv 28373  ·𝑖OLDcdip 28483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-grpo 28276  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-dip 28484
This theorem is referenced by:  ipf  28496  ipipcj  28498  ip1ilem  28609  ip2i  28611  ipasslem1  28614  ipasslem2  28615  ipasslem4  28617  ipasslem5  28618  ipasslem7  28619  ipasslem8  28620  ipasslem9  28621  ipasslem10  28622  ipasslem11  28623  dipdi  28626  ip2dii  28627  dipassr  28629  dipsubdir  28631  dipsubdi  28632  pythi  28633  siilem1  28634  siilem2  28635  siii  28636  ipblnfi  28638  ip2eqi  28639  htthlem  28700
  Copyright terms: Public domain W3C validator