| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubrgd | Structured version Visualization version GIF version | ||
| Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubrgd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubrgd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubrgd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubrgd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubrgd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubrgd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubrgd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubrgd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
| issubrgd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
| issubrgd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
| issubrgd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
| issubrgd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
| Ref | Expression |
|---|---|
| issubrgd | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
| 2 | issubrgd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
| 3 | issubrgd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 4 | issubrgd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 5 | issubrgd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 6 | issubrgd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 7 | issubrgd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 8 | issubrgd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
| 9 | ringgrp 20147 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 19074 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| 12 | issubrgd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
| 13 | issubrgd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
| 14 | 12, 13 | eqeltrrd 2829 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
| 15 | issubrgd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
| 16 | 15 | oveqdr 7415 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
| 17 | issubrgd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
| 18 | 17 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
| 19 | 16, 18 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 20 | 19 | ralrimivva 3180 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 21 | eqid 2729 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 22 | eqid 2729 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
| 23 | eqid 2729 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
| 24 | 21, 22, 23 | issubrg2 20501 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 25 | 8, 24 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 26 | 11, 14, 20, 25 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 SubGrpcsubg 19052 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 |
| This theorem is referenced by: rngunsnply 43158 |
| Copyright terms: Public domain | W3C validator |