Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem7 Structured version   Visualization version   GIF version

Theorem knoppcnlem7 34606
Description: Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem7.n (𝜑𝑁 ∈ ℕ)
knoppcnlem7.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem7.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem7 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Distinct variable groups:   𝑚,𝐹,𝑤,𝑧   𝑚,𝑀,𝑤   𝜑,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)

Proof of Theorem knoppcnlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 reex 10893 . . 3 ℝ ∈ V
21a1i 11 . 2 (𝜑 → ℝ ∈ V)
3 knoppcnlem7.2 . . 3 (𝜑𝑀 ∈ ℕ0)
4 elnn0uz 12552 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
53, 4sylib 217 . 2 (𝜑𝑀 ∈ (ℤ‘0))
6 eqid 2738 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
76a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
8 fveq2 6756 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
98fveq1d 6758 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑚) = ((𝐹𝑤)‘𝑚))
109cbvmptv 5183 . . . . 5 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚))
1110a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)))
12 fveq2 6756 . . . . . 6 (𝑚 = 𝑘 → ((𝐹𝑤)‘𝑚) = ((𝐹𝑤)‘𝑘))
1312mpteq2dv 5172 . . . . 5 (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1413adantl 481 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1511, 14eqtrd 2778 . . 3 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
16 elfznn0 13278 . . . 4 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
1716adantl 481 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
181mptex 7081 . . . 4 (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V
1918a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V)
207, 15, 17, 19fvmptd 6864 . 2 ((𝜑𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
212, 5, 20seqof 13708 1 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  cfv 6418  (class class class)co 7255  f cof 7509  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cuz 12511  ...cfz 13168  cfl 13438  seqcseq 13649  cexp 13710  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650
This theorem is referenced by:  knoppcnlem8  34607  knoppcnlem9  34608  knoppcnlem11  34610  knoppndvlem4  34622
  Copyright terms: Public domain W3C validator