| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36492. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem7.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppcnlem7.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem7.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppcnlem7.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| knoppcnlem7.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| knoppcnlem7 | ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11159 | . . 3 ⊢ ℝ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ V) |
| 3 | knoppcnlem7.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 4 | elnn0uz 12838 | . . 3 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) |
| 8 | fveq2 6858 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) | |
| 9 | 8 | fveq1d 6860 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧)‘𝑚) = ((𝐹‘𝑤)‘𝑚)) |
| 10 | 9 | cbvmptv 5211 | . . . . 5 ⊢ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚))) |
| 12 | fveq2 6858 | . . . . . 6 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑤)‘𝑚) = ((𝐹‘𝑤)‘𝑘)) | |
| 13 | 12 | mpteq2dv 5201 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 15 | 11, 14 | eqtrd 2764 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 16 | elfznn0 13581 | . . . 4 ⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 18 | 1 | mptex 7197 | . . . 4 ⊢ (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V |
| 19 | 18 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V) |
| 20 | 7, 15, 17, 19 | fvmptd 6975 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 21 | 2, 5, 20 | seqof 14024 | 1 ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ℤ≥cuz 12793 ...cfz 13468 ⌊cfl 13752 seqcseq 13966 ↑cexp 14026 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 |
| This theorem is referenced by: knoppcnlem8 36488 knoppcnlem9 36489 knoppcnlem11 36491 knoppndvlem4 36503 |
| Copyright terms: Public domain | W3C validator |