Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem7 Structured version   Visualization version   GIF version

Theorem knoppcnlem7 36475
Description: Lemma for knoppcn 36480. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem7.n (𝜑𝑁 ∈ ℕ)
knoppcnlem7.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem7.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem7 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Distinct variable groups:   𝑚,𝐹,𝑤,𝑧   𝑚,𝑀,𝑤   𝜑,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)

Proof of Theorem knoppcnlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 reex 11119 . . 3 ℝ ∈ V
21a1i 11 . 2 (𝜑 → ℝ ∈ V)
3 knoppcnlem7.2 . . 3 (𝜑𝑀 ∈ ℕ0)
4 elnn0uz 12798 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
53, 4sylib 218 . 2 (𝜑𝑀 ∈ (ℤ‘0))
6 eqid 2729 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
76a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
8 fveq2 6826 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
98fveq1d 6828 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑚) = ((𝐹𝑤)‘𝑚))
109cbvmptv 5199 . . . . 5 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚))
1110a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)))
12 fveq2 6826 . . . . . 6 (𝑚 = 𝑘 → ((𝐹𝑤)‘𝑚) = ((𝐹𝑤)‘𝑘))
1312mpteq2dv 5189 . . . . 5 (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1413adantl 481 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1511, 14eqtrd 2764 . . 3 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
16 elfznn0 13541 . . . 4 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
1716adantl 481 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
181mptex 7163 . . . 4 (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V
1918a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V)
207, 15, 17, 19fvmptd 6941 . 2 ((𝜑𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
212, 5, 20seqof 13984 1 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  f cof 7615  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cuz 12753  ...cfz 13428  cfl 13712  seqcseq 13926  cexp 13986  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927
This theorem is referenced by:  knoppcnlem8  36476  knoppcnlem9  36477  knoppcnlem11  36479  knoppndvlem4  36491
  Copyright terms: Public domain W3C validator