Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem7 Structured version   Visualization version   GIF version

Theorem knoppcnlem7 36522
Description: Lemma for knoppcn 36527. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem7.n (𝜑𝑁 ∈ ℕ)
knoppcnlem7.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem7.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem7 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Distinct variable groups:   𝑚,𝐹,𝑤,𝑧   𝑚,𝑀,𝑤   𝜑,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)

Proof of Theorem knoppcnlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 reex 11225 . . 3 ℝ ∈ V
21a1i 11 . 2 (𝜑 → ℝ ∈ V)
3 knoppcnlem7.2 . . 3 (𝜑𝑀 ∈ ℕ0)
4 elnn0uz 12902 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
53, 4sylib 218 . 2 (𝜑𝑀 ∈ (ℤ‘0))
6 eqid 2736 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
76a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
8 fveq2 6881 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
98fveq1d 6883 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑚) = ((𝐹𝑤)‘𝑚))
109cbvmptv 5230 . . . . 5 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚))
1110a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)))
12 fveq2 6881 . . . . . 6 (𝑚 = 𝑘 → ((𝐹𝑤)‘𝑚) = ((𝐹𝑤)‘𝑘))
1312mpteq2dv 5220 . . . . 5 (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1413adantl 481 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1511, 14eqtrd 2771 . . 3 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
16 elfznn0 13642 . . . 4 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
1716adantl 481 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
181mptex 7220 . . . 4 (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V
1918a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V)
207, 15, 17, 19fvmptd 6998 . 2 ((𝜑𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
212, 5, 20seqof 14082 1 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  (class class class)co 7410  f cof 7674  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cuz 12857  ...cfz 13529  cfl 13812  seqcseq 14024  cexp 14084  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025
This theorem is referenced by:  knoppcnlem8  36523  knoppcnlem9  36524  knoppcnlem11  36526  knoppndvlem4  36538
  Copyright terms: Public domain W3C validator