Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem7 Structured version   Visualization version   GIF version

Theorem knoppcnlem7 36482
Description: Lemma for knoppcn 36487. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem7.n (𝜑𝑁 ∈ ℕ)
knoppcnlem7.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem7.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem7 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Distinct variable groups:   𝑚,𝐹,𝑤,𝑧   𝑚,𝑀,𝑤   𝜑,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)

Proof of Theorem knoppcnlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 reex 11244 . . 3 ℝ ∈ V
21a1i 11 . 2 (𝜑 → ℝ ∈ V)
3 knoppcnlem7.2 . . 3 (𝜑𝑀 ∈ ℕ0)
4 elnn0uz 12921 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
53, 4sylib 218 . 2 (𝜑𝑀 ∈ (ℤ‘0))
6 eqid 2735 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
76a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
8 fveq2 6907 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
98fveq1d 6909 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑚) = ((𝐹𝑤)‘𝑚))
109cbvmptv 5261 . . . . 5 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚))
1110a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)))
12 fveq2 6907 . . . . . 6 (𝑚 = 𝑘 → ((𝐹𝑤)‘𝑚) = ((𝐹𝑤)‘𝑘))
1312mpteq2dv 5250 . . . . 5 (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1413adantl 481 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1511, 14eqtrd 2775 . . 3 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
16 elfznn0 13657 . . . 4 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
1716adantl 481 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
181mptex 7243 . . . 4 (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V
1918a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V)
207, 15, 17, 19fvmptd 7023 . 2 ((𝜑𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
212, 5, 20seqof 14097 1 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  cfv 6563  (class class class)co 7431  f cof 7695  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cuz 12876  ...cfz 13544  cfl 13827  seqcseq 14039  cexp 14099  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040
This theorem is referenced by:  knoppcnlem8  36483  knoppcnlem9  36484  knoppcnlem11  36486  knoppndvlem4  36498
  Copyright terms: Public domain W3C validator