Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem7 Structured version   Visualization version   GIF version

Theorem knoppcnlem7 36460
Description: Lemma for knoppcn 36465. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem7.n (𝜑𝑁 ∈ ℕ)
knoppcnlem7.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem7.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem7 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Distinct variable groups:   𝑚,𝐹,𝑤,𝑧   𝑚,𝑀,𝑤   𝜑,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛)

Proof of Theorem knoppcnlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 reex 11135 . . 3 ℝ ∈ V
21a1i 11 . 2 (𝜑 → ℝ ∈ V)
3 knoppcnlem7.2 . . 3 (𝜑𝑀 ∈ ℕ0)
4 elnn0uz 12814 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
53, 4sylib 218 . 2 (𝜑𝑀 ∈ (ℤ‘0))
6 eqid 2729 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
76a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
8 fveq2 6840 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
98fveq1d 6842 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑚) = ((𝐹𝑤)‘𝑚))
109cbvmptv 5206 . . . . 5 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚))
1110a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)))
12 fveq2 6840 . . . . . 6 (𝑚 = 𝑘 → ((𝐹𝑤)‘𝑚) = ((𝐹𝑤)‘𝑘))
1312mpteq2dv 5196 . . . . 5 (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1413adantl 481 . . . 4 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
1511, 14eqtrd 2764 . . 3 (((𝜑𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
16 elfznn0 13557 . . . 4 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
1716adantl 481 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
181mptex 7179 . . . 4 (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V
1918a1i 11 . . 3 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)) ∈ V)
207, 15, 17, 19fvmptd 6957 . 2 ((𝜑𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑘)))
212, 5, 20seqof 14000 1 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  cfv 6499  (class class class)co 7369  f cof 7631  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cuz 12769  ...cfz 13444  cfl 13728  seqcseq 13942  cexp 14002  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943
This theorem is referenced by:  knoppcnlem8  36461  knoppcnlem9  36462  knoppcnlem11  36464  knoppndvlem4  36476
  Copyright terms: Public domain W3C validator