| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36527. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem7.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppcnlem7.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem7.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppcnlem7.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| knoppcnlem7.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| knoppcnlem7 | ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11225 | . . 3 ⊢ ℝ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ V) |
| 3 | knoppcnlem7.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 4 | elnn0uz 12902 | . . 3 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
| 6 | eqid 2736 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) |
| 8 | fveq2 6881 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) | |
| 9 | 8 | fveq1d 6883 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧)‘𝑚) = ((𝐹‘𝑤)‘𝑚)) |
| 10 | 9 | cbvmptv 5230 | . . . . 5 ⊢ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚))) |
| 12 | fveq2 6881 | . . . . . 6 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑤)‘𝑚) = ((𝐹‘𝑤)‘𝑘)) | |
| 13 | 12 | mpteq2dv 5220 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 15 | 11, 14 | eqtrd 2771 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 16 | elfznn0 13642 | . . . 4 ⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 18 | 1 | mptex 7220 | . . . 4 ⊢ (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V |
| 19 | 18 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V) |
| 20 | 7, 15, 17, 19 | fvmptd 6998 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 21 | 2, 5, 20 | seqof 14082 | 1 ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 − cmin 11471 / cdiv 11899 ℕcn 12245 2c2 12300 ℕ0cn0 12506 ℤ≥cuz 12857 ...cfz 13529 ⌊cfl 13812 seqcseq 14024 ↑cexp 14084 abscabs 15258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-seq 14025 |
| This theorem is referenced by: knoppcnlem8 36523 knoppcnlem9 36524 knoppcnlem11 36526 knoppndvlem4 36538 |
| Copyright terms: Public domain | W3C validator |