Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem7 | Structured version Visualization version GIF version |
Description: Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppcnlem7.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppcnlem7.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppcnlem7.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppcnlem7.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
knoppcnlem7.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Ref | Expression |
---|---|
knoppcnlem7 | ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10893 | . . 3 ⊢ ℝ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ V) |
3 | knoppcnlem7.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
4 | elnn0uz 12552 | . . 3 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
6 | eqid 2738 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) |
8 | fveq2 6756 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) | |
9 | 8 | fveq1d 6758 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧)‘𝑚) = ((𝐹‘𝑤)‘𝑚)) |
10 | 9 | cbvmptv 5183 | . . . . 5 ⊢ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚))) |
12 | fveq2 6756 | . . . . . 6 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑤)‘𝑚) = ((𝐹‘𝑤)‘𝑘)) | |
13 | 12 | mpteq2dv 5172 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
14 | 13 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
15 | 11, 14 | eqtrd 2778 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
16 | elfznn0 13278 | . . . 4 ⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) | |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
18 | 1 | mptex 7081 | . . . 4 ⊢ (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V |
19 | 18 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V) |
20 | 7, 15, 17, 19 | fvmptd 6864 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
21 | 2, 5, 20 | seqof 13708 | 1 ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 ⌊cfl 13438 seqcseq 13649 ↑cexp 13710 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 |
This theorem is referenced by: knoppcnlem8 34607 knoppcnlem9 34608 knoppcnlem11 34610 knoppndvlem4 34622 |
Copyright terms: Public domain | W3C validator |