| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36480. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem7.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppcnlem7.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem7.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppcnlem7.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| knoppcnlem7.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| knoppcnlem7 | ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11119 | . . 3 ⊢ ℝ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ V) |
| 3 | knoppcnlem7.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 4 | elnn0uz 12798 | . . 3 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) |
| 8 | fveq2 6826 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) | |
| 9 | 8 | fveq1d 6828 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧)‘𝑚) = ((𝐹‘𝑤)‘𝑚)) |
| 10 | 9 | cbvmptv 5199 | . . . . 5 ⊢ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚))) |
| 12 | fveq2 6826 | . . . . . 6 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑤)‘𝑚) = ((𝐹‘𝑤)‘𝑘)) | |
| 13 | 12 | mpteq2dv 5189 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 15 | 11, 14 | eqtrd 2764 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 16 | elfznn0 13541 | . . . 4 ⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 18 | 1 | mptex 7163 | . . . 4 ⊢ (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V |
| 19 | 18 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘)) ∈ V) |
| 20 | 7, 15, 17, 19 | fvmptd 6941 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))‘𝑘) = (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑘))) |
| 21 | 2, 5, 20 | seqof 13984 | 1 ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 / cdiv 11795 ℕcn 12146 2c2 12201 ℕ0cn0 12402 ℤ≥cuz 12753 ...cfz 13428 ⌊cfl 13712 seqcseq 13926 ↑cexp 13986 abscabs 15159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 |
| This theorem is referenced by: knoppcnlem8 36476 knoppcnlem9 36477 knoppcnlem11 36479 knoppndvlem4 36491 |
| Copyright terms: Public domain | W3C validator |