| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leagne3 | Structured version Visualization version GIF version | ||
| Description: Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| isleag.p | ⊢ 𝑃 = (Base‘𝐺) |
| isleag.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isleag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| isleag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| isleag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| isleag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| isleag.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| isleag.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| leagne.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Ref | Expression |
|---|---|
| leagne3 | ⊢ (𝜑 → 𝐷 ≠ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isleag.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 3 | eqid 2730 | . . . 4 ⊢ (hlG‘𝐺) = (hlG‘𝐺) | |
| 4 | isleag.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐺 ∈ TarskiG) |
| 6 | isleag.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐴 ∈ 𝑃) |
| 8 | isleag.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐵 ∈ 𝑃) |
| 10 | isleag.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | 10 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐶 ∈ 𝑃) |
| 12 | isleag.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 13 | 12 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐷 ∈ 𝑃) |
| 14 | isleag.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 15 | 14 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐸 ∈ 𝑃) |
| 16 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝑥 ∈ 𝑃) | |
| 17 | simprr 772 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉) | |
| 18 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 16, 17 | cgrane3 28785 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐸 ≠ 𝐷) |
| 19 | 18 | necomd 2981 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐷 ≠ 𝐸) |
| 20 | leagne.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) | |
| 21 | isleag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 22 | 1, 4, 6, 8, 10, 12, 14, 21 | isleag 28818 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) |
| 23 | 20, 22 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) |
| 24 | 19, 23 | r19.29a 3138 | 1 ⊢ (𝜑 → 𝐷 ≠ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 class class class wbr 5089 ‘cfv 6477 〈“cs3 14741 Basecbs 17112 TarskiGcstrkg 28398 Itvcitv 28404 hlGchlg 28571 cgrAccgra 28778 inAcinag 28806 ≤∠cleag 28807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-hlg 28572 df-cgra 28779 df-leag 28817 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |