Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leagne3 | Structured version Visualization version GIF version |
Description: Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.) |
Ref | Expression |
---|---|
isleag.p | ⊢ 𝑃 = (Base‘𝐺) |
isleag.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isleag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
isleag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
isleag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
isleag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
isleag.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
isleag.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
leagne.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) |
Ref | Expression |
---|---|
leagne3 | ⊢ (𝜑 → 𝐷 ≠ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isleag.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2739 | . . . 4 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
3 | eqid 2739 | . . . 4 ⊢ (hlG‘𝐺) = (hlG‘𝐺) | |
4 | isleag.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐺 ∈ TarskiG) |
6 | isleag.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐴 ∈ 𝑃) |
8 | isleag.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐵 ∈ 𝑃) |
10 | isleag.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐶 ∈ 𝑃) |
12 | isleag.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | 12 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐷 ∈ 𝑃) |
14 | isleag.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
15 | 14 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐸 ∈ 𝑃) |
16 | simplr 769 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝑥 ∈ 𝑃) | |
17 | simprr 773 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉) | |
18 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 16, 17 | cgrane3 27054 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐸 ≠ 𝐷) |
19 | 18 | necomd 2999 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) → 𝐷 ≠ 𝐸) |
20 | leagne.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) | |
21 | isleag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
22 | 1, 4, 6, 8, 10, 12, 14, 21 | isleag 27087 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) |
23 | 20, 22 | mpbid 235 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) |
24 | 19, 23 | r19.29a 3218 | 1 ⊢ (𝜑 → 𝐷 ≠ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∃wrex 3065 class class class wbr 5070 ‘cfv 6415 〈“cs3 14458 Basecbs 16815 TarskiGcstrkg 26668 Itvcitv 26674 hlGchlg 26840 cgrAccgra 27047 inAcinag 27075 ≤∠cleag 27076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-fzo 13287 df-hash 13948 df-word 14121 df-concat 14177 df-s1 14204 df-s2 14464 df-s3 14465 df-hlg 26841 df-cgra 27048 df-leag 27086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |