| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flhalf | Structured version Visualization version GIF version | ||
| Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| flhalf | ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12592 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 2 | peano2re 11408 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ) |
| 4 | 3 | rehalfcld 12488 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ) |
| 5 | flltp1 13817 | . . . . . 6 ⊢ (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) |
| 7 | 4 | flcld 13815 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ) |
| 8 | 7 | zred 12697 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ) |
| 9 | 1red 11236 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 10 | 8, 9 | readdcld 11264 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ) |
| 11 | 2rp 13013 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 13 | 3, 10, 12 | ltdivmuld 13102 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))) |
| 14 | 6, 13 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))) |
| 15 | 9 | recnd 11263 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) |
| 16 | 15 | 2timesd 12484 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · 1) = (1 + 1)) |
| 17 | 16 | oveq2d 7421 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
| 18 | 2cnd 12318 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 19 | 8 | recnd 11263 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ) |
| 20 | 18, 19, 15 | adddid 11259 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1))) |
| 21 | 2re 12314 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 23 | 22, 8 | remulcld 11265 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ) |
| 24 | 23 | recnd 11263 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ) |
| 25 | 24, 15, 15 | addassd 11257 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
| 26 | 17, 20, 25 | 3eqtr4d 2780 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
| 27 | 14, 26 | breqtrd 5145 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
| 28 | 23, 9 | readdcld 11264 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ) |
| 29 | 1, 28, 9 | ltadd1d 11830 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))) |
| 30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)) |
| 31 | 2z 12624 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 33 | 32, 7 | zmulcld 12703 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) |
| 34 | zleltp1 12643 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) | |
| 35 | 33, 34 | mpdan 687 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) |
| 36 | 30, 35 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 / cdiv 11894 2c2 12295 ℤcz 12588 ℝ+crp 13008 ⌊cfl 13807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 |
| This theorem is referenced by: ovolunlem1a 25449 |
| Copyright terms: Public domain | W3C validator |