| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flhalf | Structured version Visualization version GIF version | ||
| Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| flhalf | ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12540 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 2 | peano2re 11354 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ) |
| 4 | 3 | rehalfcld 12436 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ) |
| 5 | flltp1 13769 | . . . . . 6 ⊢ (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) |
| 7 | 4 | flcld 13767 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ) |
| 8 | 7 | zred 12645 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ) |
| 9 | 1red 11182 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 10 | 8, 9 | readdcld 11210 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ) |
| 11 | 2rp 12963 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 13 | 3, 10, 12 | ltdivmuld 13053 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))) |
| 14 | 6, 13 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))) |
| 15 | 9 | recnd 11209 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) |
| 16 | 15 | 2timesd 12432 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · 1) = (1 + 1)) |
| 17 | 16 | oveq2d 7406 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
| 18 | 2cnd 12271 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 19 | 8 | recnd 11209 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ) |
| 20 | 18, 19, 15 | adddid 11205 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1))) |
| 21 | 2re 12267 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 23 | 22, 8 | remulcld 11211 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ) |
| 24 | 23 | recnd 11209 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ) |
| 25 | 24, 15, 15 | addassd 11203 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
| 26 | 17, 20, 25 | 3eqtr4d 2775 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
| 27 | 14, 26 | breqtrd 5136 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
| 28 | 23, 9 | readdcld 11210 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ) |
| 29 | 1, 28, 9 | ltadd1d 11778 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))) |
| 30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)) |
| 31 | 2z 12572 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 33 | 32, 7 | zmulcld 12651 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) |
| 34 | zleltp1 12591 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) | |
| 35 | 33, 34 | mpdan 687 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) |
| 36 | 30, 35 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 / cdiv 11842 2c2 12248 ℤcz 12536 ℝ+crp 12958 ⌊cfl 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 |
| This theorem is referenced by: ovolunlem1a 25404 |
| Copyright terms: Public domain | W3C validator |