![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flhalf | Structured version Visualization version GIF version |
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
flhalf | ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12569 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | peano2re 11394 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ) |
4 | 3 | rehalfcld 12466 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ) |
5 | flltp1 13772 | . . . . . 6 ⊢ (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) |
7 | 4 | flcld 13770 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ) |
8 | 7 | zred 12673 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ) |
9 | 1red 11222 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
10 | 8, 9 | readdcld 11250 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ) |
11 | 2rp 12986 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
13 | 3, 10, 12 | ltdivmuld 13074 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))) |
14 | 6, 13 | mpbid 231 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))) |
15 | 9 | recnd 11249 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) |
16 | 15 | 2timesd 12462 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · 1) = (1 + 1)) |
17 | 16 | oveq2d 7428 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
18 | 2cnd 12297 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
19 | 8 | recnd 11249 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ) |
20 | 18, 19, 15 | adddid 11245 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1))) |
21 | 2re 12293 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
23 | 22, 8 | remulcld 11251 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ) |
24 | 23 | recnd 11249 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ) |
25 | 24, 15, 15 | addassd 11243 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
26 | 17, 20, 25 | 3eqtr4d 2781 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
27 | 14, 26 | breqtrd 5174 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
28 | 23, 9 | readdcld 11250 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ) |
29 | 1, 28, 9 | ltadd1d 11814 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))) |
30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)) |
31 | 2z 12601 | . . . . 5 ⊢ 2 ∈ ℤ | |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
33 | 32, 7 | zmulcld 12679 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) |
34 | zleltp1 12620 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) | |
35 | 33, 34 | mpdan 684 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) |
36 | 30, 35 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 1c1 11117 + caddc 11119 · cmul 11121 < clt 11255 ≤ cle 11256 / cdiv 11878 2c2 12274 ℤcz 12565 ℝ+crp 12981 ⌊cfl 13762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fl 13764 |
This theorem is referenced by: ovolunlem1a 25345 |
Copyright terms: Public domain | W3C validator |