MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flhalf Structured version   Visualization version   GIF version

Theorem flhalf 13195
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))

Proof of Theorem flhalf
StepHypRef Expression
1 zre 11973 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 peano2re 10802 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
31, 2syl 17 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
43rehalfcld 11872 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ)
5 flltp1 13165 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
64, 5syl 17 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
74flcld 13163 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ)
87zred 12075 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ)
9 1red 10631 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℝ)
108, 9readdcld 10659 . . . . . 6 (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ)
11 2rp 12382 . . . . . . 7 2 ∈ ℝ+
1211a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
133, 10, 12ltdivmuld 12470 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))))
146, 13mpbid 235 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))
159recnd 10658 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
16152timesd 11868 . . . . . 6 (𝑁 ∈ ℤ → (2 · 1) = (1 + 1))
1716oveq2d 7151 . . . . 5 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
18 2cnd 11703 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
198recnd 10658 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ)
2018, 19, 15adddid 10654 . . . . 5 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)))
21 2re 11699 . . . . . . . . 9 2 ∈ ℝ
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ∈ ℝ)
2322, 8remulcld 10660 . . . . . . 7 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ)
2423recnd 10658 . . . . . 6 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ)
2524, 15, 15addassd 10652 . . . . 5 (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
2617, 20, 253eqtr4d 2843 . . . 4 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
2714, 26breqtrd 5056 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
2823, 9readdcld 10659 . . . 4 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ)
291, 28, 9ltadd1d 11222 . . 3 (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)))
3027, 29mpbird 260 . 2 (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))
31 2z 12002 . . . . 5 2 ∈ ℤ
3231a1i 11 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3332, 7zmulcld 12081 . . 3 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ)
34 zleltp1 12021 . . 3 ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3533, 34mpdan 686 . 2 (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3630, 35mpbird 260 1 (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  2c2 11680  cz 11969  +crp 12377  cfl 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157
This theorem is referenced by:  ovolunlem1a  24100
  Copyright terms: Public domain W3C validator