MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flhalf Structured version   Visualization version   GIF version

Theorem flhalf 13188
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))

Proof of Theorem flhalf
StepHypRef Expression
1 zre 11973 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 peano2re 10801 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
31, 2syl 17 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
43rehalfcld 11872 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ)
5 flltp1 13158 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
64, 5syl 17 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
74flcld 13156 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ)
87zred 12075 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ)
9 1red 10630 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℝ)
108, 9readdcld 10658 . . . . . 6 (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ)
11 2rp 12382 . . . . . . 7 2 ∈ ℝ+
1211a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
133, 10, 12ltdivmuld 12470 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))))
146, 13mpbid 233 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))
159recnd 10657 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
16152timesd 11868 . . . . . 6 (𝑁 ∈ ℤ → (2 · 1) = (1 + 1))
1716oveq2d 7161 . . . . 5 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
18 2cnd 11703 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
198recnd 10657 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ)
2018, 19, 15adddid 10653 . . . . 5 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)))
21 2re 11699 . . . . . . . . 9 2 ∈ ℝ
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ∈ ℝ)
2322, 8remulcld 10659 . . . . . . 7 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ)
2423recnd 10657 . . . . . 6 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ)
2524, 15, 15addassd 10651 . . . . 5 (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
2617, 20, 253eqtr4d 2863 . . . 4 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
2714, 26breqtrd 5083 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
2823, 9readdcld 10658 . . . 4 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ)
291, 28, 9ltadd1d 11221 . . 3 (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)))
3027, 29mpbird 258 . 2 (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))
31 2z 12002 . . . . 5 2 ∈ ℤ
3231a1i 11 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3332, 7zmulcld 12081 . . 3 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ)
34 zleltp1 12021 . . 3 ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3533, 34mpdan 683 . 2 (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3630, 35mpbird 258 1 (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664   / cdiv 11285  2c2 11680  cz 11969  +crp 12377  cfl 13148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150
This theorem is referenced by:  ovolunlem1a  24024
  Copyright terms: Public domain W3C validator