| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flhalf | Structured version Visualization version GIF version | ||
| Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| flhalf | ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12469 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 2 | peano2re 11283 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ) |
| 4 | 3 | rehalfcld 12365 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ) |
| 5 | flltp1 13701 | . . . . . 6 ⊢ (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1)) |
| 7 | 4 | flcld 13699 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ) |
| 8 | 7 | zred 12574 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ) |
| 9 | 1red 11110 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 10 | 8, 9 | readdcld 11138 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ) |
| 11 | 2rp 12892 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 13 | 3, 10, 12 | ltdivmuld 12982 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))) |
| 14 | 6, 13 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))) |
| 15 | 9 | recnd 11137 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) |
| 16 | 15 | 2timesd 12361 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · 1) = (1 + 1)) |
| 17 | 16 | oveq2d 7362 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
| 18 | 2cnd 12200 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 19 | 8 | recnd 11137 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ) |
| 20 | 18, 19, 15 | adddid 11133 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1))) |
| 21 | 2re 12196 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 23 | 22, 8 | remulcld 11139 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ) |
| 24 | 23 | recnd 11137 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ) |
| 25 | 24, 15, 15 | addassd 11131 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1))) |
| 26 | 17, 20, 25 | 3eqtr4d 2776 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
| 27 | 14, 26 | breqtrd 5117 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)) |
| 28 | 23, 9 | readdcld 11138 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ) |
| 29 | 1, 28, 9 | ltadd1d 11707 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))) |
| 30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)) |
| 31 | 2z 12501 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 33 | 32, 7 | zmulcld 12580 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) |
| 34 | zleltp1 12520 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) | |
| 35 | 33, 34 | mpdan 687 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))) |
| 36 | 30, 35 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 1c1 11004 + caddc 11006 · cmul 11008 < clt 11143 ≤ cle 11144 / cdiv 11771 2c2 12177 ℤcz 12465 ℝ+crp 12887 ⌊cfl 13691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fl 13693 |
| This theorem is referenced by: ovolunlem1a 25422 |
| Copyright terms: Public domain | W3C validator |