MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3halfnz Structured version   Visualization version   GIF version

Theorem 3halfnz 12642
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
3halfnz ¬ (3 / 2) ∈ ℤ

Proof of Theorem 3halfnz
StepHypRef Expression
1 1z 12593 . 2 1 ∈ ℤ
2 2cn 12288 . . . . 5 2 ∈ ℂ
32mullidi 11220 . . . 4 (1 · 2) = 2
4 2lt3 12385 . . . 4 2 < 3
53, 4eqbrtri 5162 . . 3 (1 · 2) < 3
6 1re 11215 . . . 4 1 ∈ ℝ
7 3re 12293 . . . 4 3 ∈ ℝ
8 2re 12287 . . . . 5 2 ∈ ℝ
9 2pos 12316 . . . . 5 0 < 2
108, 9pm3.2i 470 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
11 ltmuldiv 12088 . . . 4 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
126, 7, 10, 11mp3an 1457 . . 3 ((1 · 2) < 3 ↔ 1 < (3 / 2))
135, 12mpbi 229 . 2 1 < (3 / 2)
14 3lt4 12387 . . . 4 3 < 4
15 2t2e4 12377 . . . . 5 (2 · 2) = 4
1615breq2i 5149 . . . 4 (3 < (2 · 2) ↔ 3 < 4)
1714, 16mpbir 230 . . 3 3 < (2 · 2)
18 1p1e2 12338 . . . . 5 (1 + 1) = 2
1918breq2i 5149 . . . 4 ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2)
20 ltdivmul 12090 . . . . 5 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
217, 8, 10, 20mp3an 1457 . . . 4 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2219, 21bitri 275 . . 3 ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2))
2317, 22mpbir 230 . 2 (3 / 2) < (1 + 1)
24 btwnnz 12639 . 2 ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ)
251, 13, 23, 24mp3an 1457 1 ¬ (3 / 2) ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wcel 2098   class class class wbr 5141  (class class class)co 7404  cr 11108  0cc0 11109  1c1 11110   + caddc 11112   · cmul 11114   < clt 11249   / cdiv 11872  2c2 12268  3c3 12269  4c4 12270  cz 12559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-n0 12474  df-z 12560
This theorem is referenced by:  n2dvds3  16318  nn0o1gt2  16328
  Copyright terms: Public domain W3C validator