MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3halfnz Structured version   Visualization version   GIF version

Theorem 3halfnz 12699
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
3halfnz ¬ (3 / 2) ∈ ℤ

Proof of Theorem 3halfnz
StepHypRef Expression
1 1z 12649 . 2 1 ∈ ℤ
2 2cn 12342 . . . . 5 2 ∈ ℂ
32mullidi 11267 . . . 4 (1 · 2) = 2
4 2lt3 12439 . . . 4 2 < 3
53, 4eqbrtri 5163 . . 3 (1 · 2) < 3
6 1re 11262 . . . 4 1 ∈ ℝ
7 3re 12347 . . . 4 3 ∈ ℝ
8 2re 12341 . . . . 5 2 ∈ ℝ
9 2pos 12370 . . . . 5 0 < 2
108, 9pm3.2i 470 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
11 ltmuldiv 12142 . . . 4 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
126, 7, 10, 11mp3an 1462 . . 3 ((1 · 2) < 3 ↔ 1 < (3 / 2))
135, 12mpbi 230 . 2 1 < (3 / 2)
14 3lt4 12441 . . . 4 3 < 4
15 2t2e4 12431 . . . . 5 (2 · 2) = 4
1615breq2i 5150 . . . 4 (3 < (2 · 2) ↔ 3 < 4)
1714, 16mpbir 231 . . 3 3 < (2 · 2)
18 1p1e2 12392 . . . . 5 (1 + 1) = 2
1918breq2i 5150 . . . 4 ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2)
20 ltdivmul 12144 . . . . 5 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
217, 8, 10, 20mp3an 1462 . . . 4 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2219, 21bitri 275 . . 3 ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2))
2317, 22mpbir 231 . 2 (3 / 2) < (1 + 1)
24 btwnnz 12696 . 2 ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ)
251, 13, 23, 24mp3an 1462 1 ¬ (3 / 2) ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2107   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296   / cdiv 11921  2c2 12322  3c3 12323  4c4 12324  cz 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616
This theorem is referenced by:  n2dvds3  16409  nn0o1gt2  16419
  Copyright terms: Public domain W3C validator