![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3halfnz | Structured version Visualization version GIF version |
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12534 | . 2 ⊢ 1 ∈ ℤ | |
2 | 2cn 12229 | . . . . 5 ⊢ 2 ∈ ℂ | |
3 | 2 | mulid2i 11161 | . . . 4 ⊢ (1 · 2) = 2 |
4 | 2lt3 12326 | . . . 4 ⊢ 2 < 3 | |
5 | 3, 4 | eqbrtri 5127 | . . 3 ⊢ (1 · 2) < 3 |
6 | 1re 11156 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 3re 12234 | . . . 4 ⊢ 3 ∈ ℝ | |
8 | 2re 12228 | . . . . 5 ⊢ 2 ∈ ℝ | |
9 | 2pos 12257 | . . . . 5 ⊢ 0 < 2 | |
10 | 8, 9 | pm3.2i 472 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
11 | ltmuldiv 12029 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
12 | 6, 7, 10, 11 | mp3an 1462 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
13 | 5, 12 | mpbi 229 | . 2 ⊢ 1 < (3 / 2) |
14 | 3lt4 12328 | . . . 4 ⊢ 3 < 4 | |
15 | 2t2e4 12318 | . . . . 5 ⊢ (2 · 2) = 4 | |
16 | 15 | breq2i 5114 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
17 | 14, 16 | mpbir 230 | . . 3 ⊢ 3 < (2 · 2) |
18 | 1p1e2 12279 | . . . . 5 ⊢ (1 + 1) = 2 | |
19 | 18 | breq2i 5114 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
20 | ltdivmul 12031 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
21 | 7, 8, 10, 20 | mp3an 1462 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
22 | 19, 21 | bitri 275 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
23 | 17, 22 | mpbir 230 | . 2 ⊢ (3 / 2) < (1 + 1) |
24 | btwnnz 12580 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
25 | 1, 13, 23, 24 | mp3an 1462 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℝcr 11051 0cc0 11052 1c1 11053 + caddc 11055 · cmul 11057 < clt 11190 / cdiv 11813 2c2 12209 3c3 12210 4c4 12211 ℤcz 12500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-nn 12155 df-2 12217 df-3 12218 df-4 12219 df-n0 12415 df-z 12501 |
This theorem is referenced by: n2dvds3 16254 nn0o1gt2 16264 |
Copyright terms: Public domain | W3C validator |