Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt11 Structured version   Visualization version   GIF version

Theorem metakunt11 39376
 Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt11.1 (𝜑𝑀 ∈ ℕ)
metakunt11.2 (𝜑𝐼 ∈ ℕ)
metakunt11.3 (𝜑𝐼𝑀)
metakunt11.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt11.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt11.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt11 ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)

Proof of Theorem metakunt11
StepHypRef Expression
1 metakunt11.4 . . 3 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2802 . . . . 5 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
4 breq1 5033 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
6 oveq1 7142 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
74, 5, 6ifbieq12d 4452 . . . . 5 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
83, 7ifbieq2d 4450 . . . 4 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
98adantl 485 . . 3 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
10 metakunt11.5 . . . . . . . 8 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1110a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
12 eqeq1 2802 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
13 breq1 5033 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
14 id 22 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 = 𝑋)
15 oveq1 7142 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
1613, 14, 15ifbieq12d 4452 . . . . . . . . . 10 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
1712, 16ifbieq2d 4450 . . . . . . . . 9 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
1817adantl 485 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
19 metakunt11.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
20 elfznn 12933 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
2221nnred 11642 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
2322adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
24 metakunt11.2 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
2524nnred 11642 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
2625adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
27 metakunt11.1 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
2827nnred 11642 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
2928adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
30 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
31 metakunt11.3 . . . . . . . . . . . . . . 15 (𝜑𝐼𝑀)
3231adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
3323, 26, 29, 30, 32ltletrd 10791 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
3423, 33ltned 10767 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
35 df-ne 2988 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
3634, 35sylib 221 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
37 iffalse 4434 . . . . . . . . . . 11 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3836, 37syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
39 iftrue 4431 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
4039adantl 485 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
4138, 40eqtrd 2833 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
4241adantr 484 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
4318, 42eqtrd 2833 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
4419adantr 484 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
4511, 43, 44, 44fvmptd 6752 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐶𝑋) = 𝑋)
46 eqeq1 2802 . . . . . . 7 ((𝐶𝑋) = 𝑋 → ((𝐶𝑋) = 𝐼𝑋 = 𝐼))
4746ifbid 4447 . . . . . 6 ((𝐶𝑋) = 𝑋 → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
4845, 47syl 17 . . . . 5 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
4923, 30ltned 10767 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
5049neneqd 2992 . . . . . . 7 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
51 iffalse 4434 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5250, 51syl 17 . . . . . 6 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5345eqcomd 2804 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐶𝑋))
54 breq1 5033 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → (𝑋 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
55 id 22 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → 𝑋 = (𝐶𝑋))
56 oveq1 7142 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → (𝑋 − 1) = ((𝐶𝑋) − 1))
5754, 55, 56ifbieq12d 4452 . . . . . . . . 9 (𝑋 = (𝐶𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5853, 57syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5958eqcomd 2804 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
6030iftrued 4433 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
6159, 60eqtrd 2833 . . . . . 6 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = 𝑋)
6252, 61eqtrd 2833 . . . . 5 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6348, 62eqtrd 2833 . . . 4 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6463adantr 484 . . 3 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
659, 64eqtrd 2833 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
6627, 24, 31, 10metakunt2 39367 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6766adantr 484 . . 3 ((𝜑𝑋 < 𝐼) → 𝐶:(1...𝑀)⟶(1...𝑀))
6867, 44ffvelrnd 6829 . 2 ((𝜑𝑋 < 𝐼) → (𝐶𝑋) ∈ (1...𝑀))
692, 65, 68, 44fvmptd 6752 1 ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ifcif 4425   class class class wbr 5030   ↦ cmpt 5110  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℝcr 10527  1c1 10529   + caddc 10531   < clt 10666   ≤ cle 10667   − cmin 10861  ℕcn 11627  ...cfz 12887 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-fz 12888 This theorem is referenced by:  metakunt13  39378
 Copyright terms: Public domain W3C validator