Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt11 Structured version   Visualization version   GIF version

Theorem metakunt11 39857
Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt11.1 (𝜑𝑀 ∈ ℕ)
metakunt11.2 (𝜑𝐼 ∈ ℕ)
metakunt11.3 (𝜑𝐼𝑀)
metakunt11.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt11.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt11.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt11 ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)

Proof of Theorem metakunt11
StepHypRef Expression
1 metakunt11.4 . . 3 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2741 . . . . 5 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
4 breq1 5056 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
6 oveq1 7220 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
74, 5, 6ifbieq12d 4467 . . . . 5 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
83, 7ifbieq2d 4465 . . . 4 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
98adantl 485 . . 3 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
10 metakunt11.5 . . . . . . . 8 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1110a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
12 eqeq1 2741 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
13 breq1 5056 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
14 id 22 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 = 𝑋)
15 oveq1 7220 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
1613, 14, 15ifbieq12d 4467 . . . . . . . . . 10 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
1712, 16ifbieq2d 4465 . . . . . . . . 9 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
1817adantl 485 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
19 metakunt11.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
20 elfznn 13141 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
2221nnred 11845 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
2322adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
24 metakunt11.2 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
2524nnred 11845 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
2625adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
27 metakunt11.1 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
2827nnred 11845 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
2928adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
30 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
31 metakunt11.3 . . . . . . . . . . . . . . 15 (𝜑𝐼𝑀)
3231adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
3323, 26, 29, 30, 32ltletrd 10992 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
3423, 33ltned 10968 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
35 df-ne 2941 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
3634, 35sylib 221 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
37 iffalse 4448 . . . . . . . . . . 11 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3836, 37syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
39 iftrue 4445 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
4039adantl 485 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
4138, 40eqtrd 2777 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
4241adantr 484 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
4318, 42eqtrd 2777 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
4419adantr 484 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
4511, 43, 44, 44fvmptd 6825 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐶𝑋) = 𝑋)
46 eqeq1 2741 . . . . . . 7 ((𝐶𝑋) = 𝑋 → ((𝐶𝑋) = 𝐼𝑋 = 𝐼))
4746ifbid 4462 . . . . . 6 ((𝐶𝑋) = 𝑋 → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
4845, 47syl 17 . . . . 5 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
4923, 30ltned 10968 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
5049neneqd 2945 . . . . . . 7 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
51 iffalse 4448 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5250, 51syl 17 . . . . . 6 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5345eqcomd 2743 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐶𝑋))
54 breq1 5056 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → (𝑋 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
55 id 22 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → 𝑋 = (𝐶𝑋))
56 oveq1 7220 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → (𝑋 − 1) = ((𝐶𝑋) − 1))
5754, 55, 56ifbieq12d 4467 . . . . . . . . 9 (𝑋 = (𝐶𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5853, 57syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5958eqcomd 2743 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
6030iftrued 4447 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
6159, 60eqtrd 2777 . . . . . 6 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = 𝑋)
6252, 61eqtrd 2777 . . . . 5 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6348, 62eqtrd 2777 . . . 4 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6463adantr 484 . . 3 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
659, 64eqtrd 2777 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
6627, 24, 31, 10metakunt2 39848 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6766adantr 484 . . 3 ((𝜑𝑋 < 𝐼) → 𝐶:(1...𝑀)⟶(1...𝑀))
6867, 44ffvelrnd 6905 . 2 ((𝜑𝑋 < 𝐼) → (𝐶𝑋) ∈ (1...𝑀))
692, 65, 68, 44fvmptd 6825 1 ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  ifcif 4439   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cn 11830  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096
This theorem is referenced by:  metakunt13  39859
  Copyright terms: Public domain W3C validator