Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt11 Structured version   Visualization version   GIF version

Theorem metakunt11 40587
Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt11.1 (𝜑𝑀 ∈ ℕ)
metakunt11.2 (𝜑𝐼 ∈ ℕ)
metakunt11.3 (𝜑𝐼𝑀)
metakunt11.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt11.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt11.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt11 ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)

Proof of Theorem metakunt11
StepHypRef Expression
1 metakunt11.4 . . 3 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2740 . . . . 5 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
4 breq1 5108 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
6 oveq1 7364 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
74, 5, 6ifbieq12d 4514 . . . . 5 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
83, 7ifbieq2d 4512 . . . 4 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
98adantl 482 . . 3 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
10 metakunt11.5 . . . . . . . 8 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1110a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
12 eqeq1 2740 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
13 breq1 5108 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
14 id 22 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 = 𝑋)
15 oveq1 7364 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
1613, 14, 15ifbieq12d 4514 . . . . . . . . . 10 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
1712, 16ifbieq2d 4512 . . . . . . . . 9 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
1817adantl 482 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
19 metakunt11.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
20 elfznn 13470 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
2221nnred 12168 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
2322adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
24 metakunt11.2 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
2524nnred 12168 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
2625adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
27 metakunt11.1 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
2827nnred 12168 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
2928adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
30 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
31 metakunt11.3 . . . . . . . . . . . . . . 15 (𝜑𝐼𝑀)
3231adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
3323, 26, 29, 30, 32ltletrd 11315 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
3423, 33ltned 11291 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
35 df-ne 2944 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
3634, 35sylib 217 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
37 iffalse 4495 . . . . . . . . . . 11 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3836, 37syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
39 iftrue 4492 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
4039adantl 482 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
4138, 40eqtrd 2776 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
4241adantr 481 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
4318, 42eqtrd 2776 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
4419adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
4511, 43, 44, 44fvmptd 6955 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐶𝑋) = 𝑋)
46 eqeq1 2740 . . . . . . 7 ((𝐶𝑋) = 𝑋 → ((𝐶𝑋) = 𝐼𝑋 = 𝐼))
4746ifbid 4509 . . . . . 6 ((𝐶𝑋) = 𝑋 → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
4845, 47syl 17 . . . . 5 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
4923, 30ltned 11291 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
5049neneqd 2948 . . . . . . 7 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
51 iffalse 4495 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5250, 51syl 17 . . . . . 6 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5345eqcomd 2742 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐶𝑋))
54 breq1 5108 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → (𝑋 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
55 id 22 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → 𝑋 = (𝐶𝑋))
56 oveq1 7364 . . . . . . . . . 10 (𝑋 = (𝐶𝑋) → (𝑋 − 1) = ((𝐶𝑋) − 1))
5754, 55, 56ifbieq12d 4514 . . . . . . . . 9 (𝑋 = (𝐶𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5853, 57syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
5958eqcomd 2742 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
6030iftrued 4494 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
6159, 60eqtrd 2776 . . . . . 6 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = 𝑋)
6252, 61eqtrd 2776 . . . . 5 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6348, 62eqtrd 2776 . . . 4 ((𝜑𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6463adantr 481 . . 3 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
659, 64eqtrd 2776 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
6627, 24, 31, 10metakunt2 40578 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6766adantr 481 . . 3 ((𝜑𝑋 < 𝐼) → 𝐶:(1...𝑀)⟶(1...𝑀))
6867, 44ffvelcdmd 7036 . 2 ((𝜑𝑋 < 𝐼) → (𝐶𝑋) ∈ (1...𝑀))
692, 65, 68, 44fvmptd 6955 1 ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  metakunt13  40589
  Copyright terms: Public domain W3C validator