Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt12 Structured version   Visualization version   GIF version

Theorem metakunt12 39401
 Description: C is the right inverse for A. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt12.1 (𝜑𝑀 ∈ ℕ)
metakunt12.2 (𝜑𝐼 ∈ ℕ)
metakunt12.3 (𝜑𝐼𝑀)
metakunt12.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt12.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt12.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt12 ((𝜑 ∧ ¬ (𝑋 = 𝑀𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)

Proof of Theorem metakunt12
StepHypRef Expression
1 ioran 981 . 2 (¬ (𝑋 = 𝑀𝑋 < 𝐼) ↔ (¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼))
2 metakunt12.4 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
32a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
4 eqeq1 2802 . . . . . . 7 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
5 breq1 5034 . . . . . . . 8 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
6 id 22 . . . . . . . 8 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
7 oveq1 7147 . . . . . . . 8 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
85, 6, 7ifbieq12d 4452 . . . . . . 7 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
94, 8ifbieq2d 4450 . . . . . 6 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
109adantl 485 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
11 metakunt12.5 . . . . . . . . . 10 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1211a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
13 eqeq1 2802 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
14 breq1 5034 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
15 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑋𝑦 = 𝑋)
16 oveq1 7147 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
1714, 15, 16ifbieq12d 4452 . . . . . . . . . . . 12 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
1813, 17ifbieq2d 4450 . . . . . . . . . . 11 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
1918adantl 485 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
20 simp2 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
21 iffalse 4434 . . . . . . . . . . . . 13 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
2220, 21syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
23 simp3 1135 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼)
24 iffalse 4434 . . . . . . . . . . . . 13 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑋 + 1))
2523, 24syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑋 + 1))
2622, 25eqtrd 2833 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = (𝑋 + 1))
2726adantr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = (𝑋 + 1))
2819, 27eqtrd 2833 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = (𝑋 + 1))
29 metakunt12.6 . . . . . . . . . 10 (𝜑𝑋 ∈ (1...𝑀))
30293ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
31 elfznn 12938 . . . . . . . . . . . . 13 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
3229, 31syl 17 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℕ)
3332nnzd 12081 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℤ)
34333ad2ant1 1130 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ ℤ)
3534peano2zd 12085 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ ℤ)
3612, 28, 30, 35fvmptd 6757 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐶𝑋) = (𝑋 + 1))
37 eqeq1 2802 . . . . . . . . 9 ((𝐶𝑋) = (𝑋 + 1) → ((𝐶𝑋) = 𝐼 ↔ (𝑋 + 1) = 𝐼))
38 breq1 5034 . . . . . . . . . 10 ((𝐶𝑋) = (𝑋 + 1) → ((𝐶𝑋) < 𝐼 ↔ (𝑋 + 1) < 𝐼))
39 id 22 . . . . . . . . . 10 ((𝐶𝑋) = (𝑋 + 1) → (𝐶𝑋) = (𝑋 + 1))
40 oveq1 7147 . . . . . . . . . 10 ((𝐶𝑋) = (𝑋 + 1) → ((𝐶𝑋) − 1) = ((𝑋 + 1) − 1))
4138, 39, 40ifbieq12d 4452 . . . . . . . . 9 ((𝐶𝑋) = (𝑋 + 1) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)))
4237, 41ifbieq2d 4450 . . . . . . . 8 ((𝐶𝑋) = (𝑋 + 1) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))))
4336, 42syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))))
44 metakunt12.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4544nnred 11647 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
46453ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℝ)
4734zred 12082 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ ℝ)
4835zred 12082 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ ℝ)
4946, 47lenltd 10782 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
5023, 49mpbird 260 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼𝑋)
5147ltp1d 11566 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 < (𝑋 + 1))
5246, 47, 48, 50, 51lelttrd 10794 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 < (𝑋 + 1))
5346, 52ltned 10772 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ≠ (𝑋 + 1))
5453necomd 3042 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ≠ 𝐼)
5554neneqd 2992 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ (𝑋 + 1) = 𝐼)
56 iffalse 4434 . . . . . . . . 9 (¬ (𝑋 + 1) = 𝐼 → if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))) = if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)))
5755, 56syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))) = if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)))
5847lep1d 11567 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ≤ (𝑋 + 1))
5946, 47, 48, 50, 58letrd 10793 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ≤ (𝑋 + 1))
6046, 48lenltd 10782 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐼 ≤ (𝑋 + 1) ↔ ¬ (𝑋 + 1) < 𝐼))
6159, 60mpbid 235 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ (𝑋 + 1) < 𝐼)
62 iffalse 4434 . . . . . . . . 9 (¬ (𝑋 + 1) < 𝐼 → if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)) = ((𝑋 + 1) − 1))
6361, 62syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)) = ((𝑋 + 1) − 1))
6434zcnd 12083 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ ℂ)
65 1cnd 10632 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 1 ∈ ℂ)
6664, 65pncand 10994 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ((𝑋 + 1) − 1) = 𝑋)
6757, 63, 663eqtrd 2837 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))) = 𝑋)
6843, 67eqtrd 2833 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6968adantr 484 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
7010, 69eqtrd 2833 . . . 4 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
71 metakunt12.1 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
72 metakunt12.3 . . . . . . 7 (𝜑𝐼𝑀)
7371, 44, 72, 11metakunt2 39391 . . . . . 6 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
74733ad2ant1 1130 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐶:(1...𝑀)⟶(1...𝑀))
7574, 30ffvelrnd 6834 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐶𝑋) ∈ (1...𝑀))
763, 70, 75, 30fvmptd 6757 . . 3 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
77763expb 1117 . 2 ((𝜑 ∧ (¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
781, 77sylan2b 596 1 ((𝜑 ∧ ¬ (𝑋 = 𝑀𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ifcif 4425   class class class wbr 5031   ↦ cmpt 5111  ⟶wf 6323  ‘cfv 6327  (class class class)co 7140  ℝcr 10532  1c1 10534   + caddc 10536   < clt 10671   ≤ cle 10672   − cmin 10866  ℕcn 11632  ℤcz 11976  ...cfz 12892 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893 This theorem is referenced by:  metakunt13  39402
 Copyright terms: Public domain W3C validator