Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt12 Structured version   Visualization version   GIF version

Theorem metakunt12 42217
Description: C is the right inverse for A. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt12.1 (𝜑𝑀 ∈ ℕ)
metakunt12.2 (𝜑𝐼 ∈ ℕ)
metakunt12.3 (𝜑𝐼𝑀)
metakunt12.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt12.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt12.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt12 ((𝜑 ∧ ¬ (𝑋 = 𝑀𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)

Proof of Theorem metakunt12
StepHypRef Expression
1 ioran 986 . 2 (¬ (𝑋 = 𝑀𝑋 < 𝐼) ↔ (¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼))
2 metakunt12.4 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
32a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
4 eqeq1 2741 . . . . . . 7 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
5 breq1 5146 . . . . . . . 8 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
6 id 22 . . . . . . . 8 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
7 oveq1 7438 . . . . . . . 8 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
85, 6, 7ifbieq12d 4554 . . . . . . 7 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
94, 8ifbieq2d 4552 . . . . . 6 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
109adantl 481 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
11 metakunt12.5 . . . . . . . . . 10 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1211a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
13 eqeq1 2741 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
14 breq1 5146 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
15 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑋𝑦 = 𝑋)
16 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
1714, 15, 16ifbieq12d 4554 . . . . . . . . . . . 12 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
1813, 17ifbieq2d 4552 . . . . . . . . . . 11 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
1918adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
20 simp2 1138 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
21 iffalse 4534 . . . . . . . . . . . . 13 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
2220, 21syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
23 simp3 1139 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼)
24 iffalse 4534 . . . . . . . . . . . . 13 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑋 + 1))
2523, 24syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑋 + 1))
2622, 25eqtrd 2777 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = (𝑋 + 1))
2726adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = (𝑋 + 1))
2819, 27eqtrd 2777 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = (𝑋 + 1))
29 metakunt12.6 . . . . . . . . . 10 (𝜑𝑋 ∈ (1...𝑀))
30293ad2ant1 1134 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
3129elfzelzd 13565 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℤ)
32313ad2ant1 1134 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ ℤ)
3332peano2zd 12725 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ ℤ)
3412, 28, 30, 33fvmptd 7023 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐶𝑋) = (𝑋 + 1))
35 eqeq1 2741 . . . . . . . . 9 ((𝐶𝑋) = (𝑋 + 1) → ((𝐶𝑋) = 𝐼 ↔ (𝑋 + 1) = 𝐼))
36 breq1 5146 . . . . . . . . . 10 ((𝐶𝑋) = (𝑋 + 1) → ((𝐶𝑋) < 𝐼 ↔ (𝑋 + 1) < 𝐼))
37 id 22 . . . . . . . . . 10 ((𝐶𝑋) = (𝑋 + 1) → (𝐶𝑋) = (𝑋 + 1))
38 oveq1 7438 . . . . . . . . . 10 ((𝐶𝑋) = (𝑋 + 1) → ((𝐶𝑋) − 1) = ((𝑋 + 1) − 1))
3936, 37, 38ifbieq12d 4554 . . . . . . . . 9 ((𝐶𝑋) = (𝑋 + 1) → if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)) = if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)))
4035, 39ifbieq2d 4552 . . . . . . . 8 ((𝐶𝑋) = (𝑋 + 1) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))))
4134, 40syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))))
42 metakunt12.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4342nnred 12281 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
44433ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℝ)
4532zred 12722 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ ℝ)
4633zred 12722 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ ℝ)
4744, 45lenltd 11407 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
4823, 47mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼𝑋)
4945ltp1d 12198 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 < (𝑋 + 1))
5044, 45, 46, 48, 49lelttrd 11419 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 < (𝑋 + 1))
5144, 50ltned 11397 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ≠ (𝑋 + 1))
5251necomd 2996 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ≠ 𝐼)
5352neneqd 2945 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ (𝑋 + 1) = 𝐼)
54 iffalse 4534 . . . . . . . . 9 (¬ (𝑋 + 1) = 𝐼 → if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))) = if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)))
5553, 54syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))) = if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)))
5645lep1d 12199 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ≤ (𝑋 + 1))
5744, 45, 46, 48, 56letrd 11418 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ≤ (𝑋 + 1))
5844, 46lenltd 11407 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐼 ≤ (𝑋 + 1) ↔ ¬ (𝑋 + 1) < 𝐼))
5957, 58mpbid 232 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ¬ (𝑋 + 1) < 𝐼)
60 iffalse 4534 . . . . . . . . 9 (¬ (𝑋 + 1) < 𝐼 → if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)) = ((𝑋 + 1) − 1))
6159, 60syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1)) = ((𝑋 + 1) − 1))
6232zcnd 12723 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ ℂ)
63 1cnd 11256 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 1 ∈ ℂ)
6462, 63pncand 11621 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → ((𝑋 + 1) − 1) = 𝑋)
6555, 61, 643eqtrd 2781 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝑋 + 1) = 𝐼, 𝑀, if((𝑋 + 1) < 𝐼, (𝑋 + 1), ((𝑋 + 1) − 1))) = 𝑋)
6641, 65eqtrd 2777 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6766adantr 480 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
6810, 67eqtrd 2777 . . . 4 (((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
69 metakunt12.1 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
70 metakunt12.3 . . . . . . 7 (𝜑𝐼𝑀)
7169, 42, 70, 11metakunt2 42207 . . . . . 6 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
72713ad2ant1 1134 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → 𝐶:(1...𝑀)⟶(1...𝑀))
7372, 30ffvelcdmd 7105 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐶𝑋) ∈ (1...𝑀))
743, 68, 73, 30fvmptd 7023 . . 3 ((𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
75743expb 1121 . 2 ((𝜑 ∧ (¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
761, 75sylan2b 594 1 ((𝜑 ∧ ¬ (𝑋 = 𝑀𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  ifcif 4525   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  metakunt13  42218
  Copyright terms: Public domain W3C validator