MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem6 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem6 25940
Description: Lemma 6 for gausslemma2d 25942. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem6 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . 4 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . . 4 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem4 25937 . . 3 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
65oveq1d 7163 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
7 fzfid 13333 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
81, 2, 3, 4gausslemma2dlem2 25935 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
98adantr 483 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
10 rspa 3204 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) ∧ 𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
1110expcom 416 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
1211adantl 484 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
13 elfzelz 12900 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℤ)
14 2z 12006 . . . . . . . . . 10 2 ∈ ℤ
1514a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 2 ∈ ℤ)
1613, 15zmulcld 12085 . . . . . . . 8 (𝑘 ∈ (1...𝑀) → (𝑘 · 2) ∈ ℤ)
1716adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ)
18 eleq1 2898 . . . . . . 7 ((𝑅𝑘) = (𝑘 · 2) → ((𝑅𝑘) ∈ ℤ ↔ (𝑘 · 2) ∈ ℤ))
1917, 18syl5ibrcom 249 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
2012, 19syld 47 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
219, 20mpd 15 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) ∈ ℤ)
227, 21fprodzcl 15300 . . 3 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ)
23 fzfid 13333 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
241, 2, 3, 4gausslemma2dlem3 25936 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2524adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
26 rspa 3204 . . . . . . . . 9 ((∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2726expcom 416 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
2827adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
291gausslemma2dlem0a 25924 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
3029nnzd 12078 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
31 elfzelz 12900 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
3214a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
3331, 32zmulcld 12085 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
34 zsubcl 12016 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑘 · 2) ∈ ℤ) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
3530, 33, 34syl2an 597 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
36 eleq1 2898 . . . . . . . 8 ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → ((𝑅𝑘) ∈ ℤ ↔ (𝑃 − (𝑘 · 2)) ∈ ℤ))
3735, 36syl5ibrcom 249 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3828, 37syld 47 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3925, 38mpd 15 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) ∈ ℤ)
4023, 39fprodzcl 15300 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℤ)
4140zred 12079 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ)
42 nnoddn2prm 16140 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
43 nnrp 12392 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
4443adantr 483 . . . 4 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
451, 42, 443syl 18 . . 3 (𝜑𝑃 ∈ ℝ+)
46 modmulmodr 13297 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
4746eqcomd 2825 . . 3 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
4822, 41, 45, 47syl3anc 1366 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
49 gausslemma2d.n . . . . . 6 𝑁 = (𝐻𝑀)
501, 2, 3, 4, 49gausslemma2dlem5 25939 . . . . 5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
5150oveq2d 7164 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)))
5251oveq1d 7163 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃))
53 neg1rr 11744 . . . . . . 7 -1 ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℝ)
551, 4, 2, 49gausslemma2dlem0h 25931 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5654, 55reexpcld 13519 . . . . 5 (𝜑 → (-1↑𝑁) ∈ ℝ)
5731adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ ℤ)
5814a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 2 ∈ ℤ)
5957, 58zmulcld 12085 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
6023, 59fprodzcl 15300 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℤ)
6160zred 12079 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℝ)
6256, 61remulcld 10663 . . . 4 (𝜑 → ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ)
63 modmulmodr 13297 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
6422, 62, 45, 63syl3anc 1366 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
658prodeq2d 15268 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ (1...𝑀)(𝑘 · 2))
6665oveq1d 7163 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
67 fzfid 13333 . . . . . . . . 9 (𝜑 → (1...𝐻) ∈ Fin)
68 elfzelz 12900 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
6968zcnd 12080 . . . . . . . . . 10 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
7069adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℂ)
71 2cn 11704 . . . . . . . . . 10 2 ∈ ℂ
7271a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 2 ∈ ℂ)
7367, 70, 72fprodmul 15306 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2))
741, 4gausslemma2dlem0d 25927 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7574nn0red 11948 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
7675ltp1d 11562 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
77 fzdisj 12926 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7876, 77syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
79 1zzd 12005 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
80 nn0pzuz 12297 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝑀 + 1) ∈ (ℤ‘1))
8174, 79, 80syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
8274nn0zd 12077 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
831, 2gausslemma2dlem0b 25925 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
8483nnzd 12078 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
851, 4, 2gausslemma2dlem0g 25930 . . . . . . . . . . 11 (𝜑𝑀𝐻)
86 eluz2 12241 . . . . . . . . . . 11 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
8782, 84, 85, 86syl3anbrc 1338 . . . . . . . . . 10 (𝜑𝐻 ∈ (ℤ𝑀))
88 fzsplit2 12924 . . . . . . . . . 10 (((𝑀 + 1) ∈ (ℤ‘1) ∧ 𝐻 ∈ (ℤ𝑀)) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
8981, 87, 88syl2anc 586 . . . . . . . . 9 (𝜑 → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
9014a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝐻) → 2 ∈ ℤ)
9168, 90zmulcld 12085 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℤ)
9291adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ)
9392zcnd 12080 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
9478, 89, 67, 93fprodsplit 15312 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
95 nnnn0 11896 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
9695anim1i 616 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
9742, 96syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
98 nn0oddm1d2 15728 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
9998biimpa 479 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℕ0)
1002, 99eqeltrid 2915 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → 𝐻 ∈ ℕ0)
1011, 97, 1003syl 18 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
102 fprodfac 15319 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
103101, 102syl 17 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
104103eqcomd 2825 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)𝑘 = (!‘𝐻))
105 fzfi 13332 . . . . . . . . . . . 12 (1...𝐻) ∈ Fin
106105, 71pm3.2i 473 . . . . . . . . . . 11 ((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ)
107 fprodconst 15324 . . . . . . . . . . 11 (((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ) → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻))))
108106, 107mp1i 13 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻))))
109104, 108oveq12d 7166 . . . . . . . . 9 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((!‘𝐻) · (2↑(♯‘(1...𝐻)))))
110 hashfz1 13698 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (♯‘(1...𝐻)) = 𝐻)
111101, 110syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝐻)) = 𝐻)
112111oveq2d 7164 . . . . . . . . . 10 (𝜑 → (2↑(♯‘(1...𝐻))) = (2↑𝐻))
113112oveq2d 7164 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑(♯‘(1...𝐻)))) = ((!‘𝐻) · (2↑𝐻)))
114101faccld 13636 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) ∈ ℕ)
115114nncnd 11646 . . . . . . . . . 10 (𝜑 → (!‘𝐻) ∈ ℂ)
116 2nn0 11906 . . . . . . . . . . 11 2 ∈ ℕ0
117 nn0expcl 13435 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℕ0)
118117nn0cnd 11949 . . . . . . . . . . 11 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℂ)
119116, 101, 118sylancr 589 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℂ)
120115, 119mulcomd 10654 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑𝐻)) = ((2↑𝐻) · (!‘𝐻)))
121109, 113, 1203eqtrd 2858 . . . . . . . 8 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((2↑𝐻) · (!‘𝐻)))
12273, 94, 1213eqtr3d 2862 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
12366, 122eqtrd 2854 . . . . . 6 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
124123oveq2d 7164 . . . . 5 (𝜑 → ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
12522zcnd 12080 . . . . . 6 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℂ)
12656recnd 10661 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℂ)
12760zcnd 12080 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℂ)
128125, 126, 127mul12d 10841 . . . . 5 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))))
129126, 119, 115mulassd 10656 . . . . 5 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
130124, 128, 1293eqtr4d 2864 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)))
131130oveq1d 7163 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
13252, 64, 1313eqtrd 2858 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
1336, 48, 1323eqtrd 2858 1 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  cdif 3931  cun 3932  cin 3933  c0 4289  ifcif 4465  {csn 4559   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  Fincfn 8501  cc 10527  cr 10528  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  4c4 11686  0cn0 11889  cz 11973  cuz 12235  +crp 12381  ...cfz 12884  cfl 13152   mod cmo 13229  cexp 13421  !cfa 13625  chash 13682  cprod 15251  cdvds 15599  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioo 12734  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-dvds 15600  df-prm 16008
This theorem is referenced by:  gausslemma2dlem7  25941
  Copyright terms: Public domain W3C validator