MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem6 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem6 26600
Description: Lemma 6 for gausslemma2d 26602. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem6 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . 4 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . . 4 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem4 26597 . . 3 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
65oveq1d 7331 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
7 fzfid 13772 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
81, 2, 3, 4gausslemma2dlem2 26595 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
98adantr 481 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
10 rspa 3227 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) ∧ 𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
1110expcom 414 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
1211adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
13 elfzelz 13335 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℤ)
14 2z 12431 . . . . . . . . . 10 2 ∈ ℤ
1514a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 2 ∈ ℤ)
1613, 15zmulcld 12511 . . . . . . . 8 (𝑘 ∈ (1...𝑀) → (𝑘 · 2) ∈ ℤ)
1716adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ)
18 eleq1 2824 . . . . . . 7 ((𝑅𝑘) = (𝑘 · 2) → ((𝑅𝑘) ∈ ℤ ↔ (𝑘 · 2) ∈ ℤ))
1917, 18syl5ibrcom 246 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
2012, 19syld 47 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
219, 20mpd 15 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) ∈ ℤ)
227, 21fprodzcl 15740 . . 3 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ)
23 fzfid 13772 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
241, 2, 3, 4gausslemma2dlem3 26596 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2524adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
26 rspa 3227 . . . . . . . . 9 ((∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2726expcom 414 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
2827adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
291gausslemma2dlem0a 26584 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
3029nnzd 12504 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
31 elfzelz 13335 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
3214a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
3331, 32zmulcld 12511 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
34 zsubcl 12441 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑘 · 2) ∈ ℤ) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
3530, 33, 34syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
36 eleq1 2824 . . . . . . . 8 ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → ((𝑅𝑘) ∈ ℤ ↔ (𝑃 − (𝑘 · 2)) ∈ ℤ))
3735, 36syl5ibrcom 246 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3828, 37syld 47 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3925, 38mpd 15 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) ∈ ℤ)
4023, 39fprodzcl 15740 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℤ)
4140zred 12505 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ)
42 nnoddn2prm 16586 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
43 nnrp 12820 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
4443adantr 481 . . . 4 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
451, 42, 443syl 18 . . 3 (𝜑𝑃 ∈ ℝ+)
46 modmulmodr 13736 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
4746eqcomd 2742 . . 3 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
4822, 41, 45, 47syl3anc 1370 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
49 gausslemma2d.n . . . . . 6 𝑁 = (𝐻𝑀)
501, 2, 3, 4, 49gausslemma2dlem5 26599 . . . . 5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
5150oveq2d 7332 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)))
5251oveq1d 7331 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃))
53 neg1rr 12167 . . . . . . 7 -1 ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℝ)
551, 4, 2, 49gausslemma2dlem0h 26591 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5654, 55reexpcld 13960 . . . . 5 (𝜑 → (-1↑𝑁) ∈ ℝ)
5731adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ ℤ)
5814a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 2 ∈ ℤ)
5957, 58zmulcld 12511 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
6023, 59fprodzcl 15740 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℤ)
6160zred 12505 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℝ)
6256, 61remulcld 11084 . . . 4 (𝜑 → ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ)
63 modmulmodr 13736 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
6422, 62, 45, 63syl3anc 1370 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
658prodeq2d 15708 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ (1...𝑀)(𝑘 · 2))
6665oveq1d 7331 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
67 fzfid 13772 . . . . . . . . 9 (𝜑 → (1...𝐻) ∈ Fin)
68 elfzelz 13335 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
6968zcnd 12506 . . . . . . . . . 10 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
7069adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℂ)
71 2cn 12127 . . . . . . . . . 10 2 ∈ ℂ
7271a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 2 ∈ ℂ)
7367, 70, 72fprodmul 15746 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2))
741, 4gausslemma2dlem0d 26587 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7574nn0red 12373 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
7675ltp1d 11984 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
77 fzdisj 13362 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7876, 77syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
79 1zzd 12430 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
80 nn0pzuz 12724 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝑀 + 1) ∈ (ℤ‘1))
8174, 79, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
8274nn0zd 12503 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
831, 2gausslemma2dlem0b 26585 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
8483nnzd 12504 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
851, 4, 2gausslemma2dlem0g 26590 . . . . . . . . . . 11 (𝜑𝑀𝐻)
86 eluz2 12667 . . . . . . . . . . 11 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
8782, 84, 85, 86syl3anbrc 1342 . . . . . . . . . 10 (𝜑𝐻 ∈ (ℤ𝑀))
88 fzsplit2 13360 . . . . . . . . . 10 (((𝑀 + 1) ∈ (ℤ‘1) ∧ 𝐻 ∈ (ℤ𝑀)) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
8981, 87, 88syl2anc 584 . . . . . . . . 9 (𝜑 → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
9014a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝐻) → 2 ∈ ℤ)
9168, 90zmulcld 12511 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℤ)
9291adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ)
9392zcnd 12506 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
9478, 89, 67, 93fprodsplit 15752 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
95 nnnn0 12319 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
9695anim1i 615 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
9742, 96syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
98 nn0oddm1d2 16170 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
9998biimpa 477 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℕ0)
1002, 99eqeltrid 2841 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → 𝐻 ∈ ℕ0)
1011, 97, 1003syl 18 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
102 fprodfac 15759 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
103101, 102syl 17 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
104103eqcomd 2742 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)𝑘 = (!‘𝐻))
105 fzfi 13771 . . . . . . . . . . . 12 (1...𝐻) ∈ Fin
106105, 71pm3.2i 471 . . . . . . . . . . 11 ((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ)
107 fprodconst 15764 . . . . . . . . . . 11 (((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ) → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻))))
108106, 107mp1i 13 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻))))
109104, 108oveq12d 7334 . . . . . . . . 9 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((!‘𝐻) · (2↑(♯‘(1...𝐻)))))
110 hashfz1 14139 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (♯‘(1...𝐻)) = 𝐻)
111101, 110syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝐻)) = 𝐻)
112111oveq2d 7332 . . . . . . . . . 10 (𝜑 → (2↑(♯‘(1...𝐻))) = (2↑𝐻))
113112oveq2d 7332 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑(♯‘(1...𝐻)))) = ((!‘𝐻) · (2↑𝐻)))
114101faccld 14077 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) ∈ ℕ)
115114nncnd 12068 . . . . . . . . . 10 (𝜑 → (!‘𝐻) ∈ ℂ)
116 2nn0 12329 . . . . . . . . . . 11 2 ∈ ℕ0
117 nn0expcl 13875 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℕ0)
118117nn0cnd 12374 . . . . . . . . . . 11 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℂ)
119116, 101, 118sylancr 587 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℂ)
120115, 119mulcomd 11075 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑𝐻)) = ((2↑𝐻) · (!‘𝐻)))
121109, 113, 1203eqtrd 2780 . . . . . . . 8 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((2↑𝐻) · (!‘𝐻)))
12273, 94, 1213eqtr3d 2784 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
12366, 122eqtrd 2776 . . . . . 6 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
124123oveq2d 7332 . . . . 5 (𝜑 → ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
12522zcnd 12506 . . . . . 6 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℂ)
12656recnd 11082 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℂ)
12760zcnd 12506 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℂ)
128125, 126, 127mul12d 11263 . . . . 5 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))))
129126, 119, 115mulassd 11077 . . . . 5 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
130124, 128, 1293eqtr4d 2786 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)))
131130oveq1d 7331 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
13252, 64, 1313eqtrd 2780 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
1336, 48, 1323eqtrd 2780 1 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  cdif 3893  cun 3894  cin 3895  c0 4266  ifcif 4470  {csn 4570   class class class wbr 5086  cmpt 5169  cfv 6465  (class class class)co 7316  Fincfn 8782  cc 10948  cr 10949  1c1 10951   + caddc 10953   · cmul 10955   < clt 11088  cle 11089  cmin 11284  -cneg 11285   / cdiv 11711  cn 12052  2c2 12107  4c4 12109  0cn0 12312  cz 12398  cuz 12661  +crp 12809  ...cfz 13318  cfl 13589   mod cmo 13668  cexp 13861  !cfa 14066  chash 14123  cprod 15691  cdvds 16039  cprime 16450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-ioo 13162  df-fz 13319  df-fzo 13462  df-fl 13591  df-mod 13669  df-seq 13801  df-exp 13862  df-fac 14067  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-clim 15273  df-prod 15692  df-dvds 16040  df-prm 16451
This theorem is referenced by:  gausslemma2dlem7  26601
  Copyright terms: Public domain W3C validator