MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem6 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem6 27416
Description: Lemma 6 for gausslemma2d 27418. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem6 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . 4 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . . 4 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem4 27413 . . 3 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
65oveq1d 7446 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
7 fzfid 14014 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
81, 2, 3, 4gausslemma2dlem2 27411 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
98adantr 480 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
10 rspa 3248 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) ∧ 𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
1110expcom 413 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
1211adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
13 elfzelz 13564 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℤ)
14 2z 12649 . . . . . . . . . 10 2 ∈ ℤ
1514a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 2 ∈ ℤ)
1613, 15zmulcld 12728 . . . . . . . 8 (𝑘 ∈ (1...𝑀) → (𝑘 · 2) ∈ ℤ)
1716adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ)
18 eleq1 2829 . . . . . . 7 ((𝑅𝑘) = (𝑘 · 2) → ((𝑅𝑘) ∈ ℤ ↔ (𝑘 · 2) ∈ ℤ))
1917, 18syl5ibrcom 247 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
2012, 19syld 47 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
219, 20mpd 15 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) ∈ ℤ)
227, 21fprodzcl 15990 . . 3 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ)
23 fzfid 14014 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
241, 2, 3, 4gausslemma2dlem3 27412 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2524adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
26 rspa 3248 . . . . . . . . 9 ((∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2726expcom 413 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
2827adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
291gausslemma2dlem0a 27400 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
3029nnzd 12640 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
31 elfzelz 13564 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
3214a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
3331, 32zmulcld 12728 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
34 zsubcl 12659 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑘 · 2) ∈ ℤ) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
3530, 33, 34syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
36 eleq1 2829 . . . . . . . 8 ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → ((𝑅𝑘) ∈ ℤ ↔ (𝑃 − (𝑘 · 2)) ∈ ℤ))
3735, 36syl5ibrcom 247 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3828, 37syld 47 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3925, 38mpd 15 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) ∈ ℤ)
4023, 39fprodzcl 15990 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℤ)
4140zred 12722 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ)
42 nnoddn2prm 16849 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
43 nnrp 13046 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
4443adantr 480 . . . 4 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
451, 42, 443syl 18 . . 3 (𝜑𝑃 ∈ ℝ+)
46 modmulmodr 13978 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
4746eqcomd 2743 . . 3 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
4822, 41, 45, 47syl3anc 1373 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
49 gausslemma2d.n . . . . . 6 𝑁 = (𝐻𝑀)
501, 2, 3, 4, 49gausslemma2dlem5 27415 . . . . 5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
5150oveq2d 7447 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)))
5251oveq1d 7446 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃))
53 neg1rr 12381 . . . . . . 7 -1 ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℝ)
551, 4, 2, 49gausslemma2dlem0h 27407 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5654, 55reexpcld 14203 . . . . 5 (𝜑 → (-1↑𝑁) ∈ ℝ)
5731adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ ℤ)
5814a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 2 ∈ ℤ)
5957, 58zmulcld 12728 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
6023, 59fprodzcl 15990 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℤ)
6160zred 12722 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℝ)
6256, 61remulcld 11291 . . . 4 (𝜑 → ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ)
63 modmulmodr 13978 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
6422, 62, 45, 63syl3anc 1373 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
658prodeq2d 15957 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ (1...𝑀)(𝑘 · 2))
6665oveq1d 7446 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
67 fzfid 14014 . . . . . . . . 9 (𝜑 → (1...𝐻) ∈ Fin)
68 elfzelz 13564 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
6968zcnd 12723 . . . . . . . . . 10 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
7069adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℂ)
71 2cn 12341 . . . . . . . . . 10 2 ∈ ℂ
7271a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 2 ∈ ℂ)
7367, 70, 72fprodmul 15996 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2))
741, 4gausslemma2dlem0d 27403 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7574nn0red 12588 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
7675ltp1d 12198 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
77 fzdisj 13591 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7876, 77syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
79 1zzd 12648 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
80 nn0pzuz 12947 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝑀 + 1) ∈ (ℤ‘1))
8174, 79, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
8274nn0zd 12639 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
831, 2gausslemma2dlem0b 27401 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
8483nnzd 12640 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
851, 4, 2gausslemma2dlem0g 27406 . . . . . . . . . . 11 (𝜑𝑀𝐻)
86 eluz2 12884 . . . . . . . . . . 11 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
8782, 84, 85, 86syl3anbrc 1344 . . . . . . . . . 10 (𝜑𝐻 ∈ (ℤ𝑀))
88 fzsplit2 13589 . . . . . . . . . 10 (((𝑀 + 1) ∈ (ℤ‘1) ∧ 𝐻 ∈ (ℤ𝑀)) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
8981, 87, 88syl2anc 584 . . . . . . . . 9 (𝜑 → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
9014a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝐻) → 2 ∈ ℤ)
9168, 90zmulcld 12728 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℤ)
9291adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ)
9392zcnd 12723 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
9478, 89, 67, 93fprodsplit 16002 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
95 nnnn0 12533 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
9695anim1i 615 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
9742, 96syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
98 nn0oddm1d2 16422 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
9998biimpa 476 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℕ0)
1002, 99eqeltrid 2845 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → 𝐻 ∈ ℕ0)
1011, 97, 1003syl 18 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
102 fprodfac 16009 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
103101, 102syl 17 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
104103eqcomd 2743 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)𝑘 = (!‘𝐻))
105 fzfi 14013 . . . . . . . . . . . 12 (1...𝐻) ∈ Fin
106105, 71pm3.2i 470 . . . . . . . . . . 11 ((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ)
107 fprodconst 16014 . . . . . . . . . . 11 (((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ) → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻))))
108106, 107mp1i 13 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻))))
109104, 108oveq12d 7449 . . . . . . . . 9 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((!‘𝐻) · (2↑(♯‘(1...𝐻)))))
110 hashfz1 14385 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (♯‘(1...𝐻)) = 𝐻)
111101, 110syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝐻)) = 𝐻)
112111oveq2d 7447 . . . . . . . . . 10 (𝜑 → (2↑(♯‘(1...𝐻))) = (2↑𝐻))
113112oveq2d 7447 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑(♯‘(1...𝐻)))) = ((!‘𝐻) · (2↑𝐻)))
114101faccld 14323 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) ∈ ℕ)
115114nncnd 12282 . . . . . . . . . 10 (𝜑 → (!‘𝐻) ∈ ℂ)
116 2nn0 12543 . . . . . . . . . . 11 2 ∈ ℕ0
117 nn0expcl 14116 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℕ0)
118117nn0cnd 12589 . . . . . . . . . . 11 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℂ)
119116, 101, 118sylancr 587 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℂ)
120115, 119mulcomd 11282 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑𝐻)) = ((2↑𝐻) · (!‘𝐻)))
121109, 113, 1203eqtrd 2781 . . . . . . . 8 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((2↑𝐻) · (!‘𝐻)))
12273, 94, 1213eqtr3d 2785 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
12366, 122eqtrd 2777 . . . . . 6 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
124123oveq2d 7447 . . . . 5 (𝜑 → ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
12522zcnd 12723 . . . . . 6 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℂ)
12656recnd 11289 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℂ)
12760zcnd 12723 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℂ)
128125, 126, 127mul12d 11470 . . . . 5 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))))
129126, 119, 115mulassd 11284 . . . . 5 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
130124, 128, 1293eqtr4d 2787 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)))
131130oveq1d 7446 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
13252, 64, 1313eqtrd 2781 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
1336, 48, 1323eqtrd 2781 1 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cdif 3948  cun 3949  cin 3950  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  cfl 13830   mod cmo 13909  cexp 14102  !cfa 14312  chash 14369  cprod 15939  cdvds 16290  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ioo 13391  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-prod 15940  df-dvds 16291  df-prm 16709
This theorem is referenced by:  gausslemma2dlem7  27417
  Copyright terms: Public domain W3C validator