Step | Hyp | Ref
| Expression |
1 | | gausslemma2d.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
2 | | gausslemma2d.h |
. . . 4
⊢ 𝐻 = ((𝑃 − 1) / 2) |
3 | | gausslemma2d.r |
. . . 4
⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
4 | | gausslemma2d.m |
. . . 4
⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
5 | 1, 2, 3, 4 | gausslemma2dlem4 26526 |
. . 3
⊢ (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) |
6 | 5 | oveq1d 7299 |
. 2
⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)) mod 𝑃)) |
7 | | fzfid 13702 |
. . . 4
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
8 | 1, 2, 3, 4 | gausslemma2dlem2 26524 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2)) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2)) |
10 | | rspa 3133 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(1...𝑀)(𝑅‘𝑘) = (𝑘 · 2) ∧ 𝑘 ∈ (1...𝑀)) → (𝑅‘𝑘) = (𝑘 · 2)) |
11 | 10 | expcom 414 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑀) → (∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2) → (𝑅‘𝑘) = (𝑘 · 2))) |
12 | 11 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2) → (𝑅‘𝑘) = (𝑘 · 2))) |
13 | | elfzelz 13265 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℤ) |
14 | | 2z 12361 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
15 | 14 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑀) → 2 ∈ ℤ) |
16 | 13, 15 | zmulcld 12441 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑀) → (𝑘 · 2) ∈ ℤ) |
17 | 16 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ) |
18 | | eleq1 2827 |
. . . . . . 7
⊢ ((𝑅‘𝑘) = (𝑘 · 2) → ((𝑅‘𝑘) ∈ ℤ ↔ (𝑘 · 2) ∈
ℤ)) |
19 | 17, 18 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ((𝑅‘𝑘) = (𝑘 · 2) → (𝑅‘𝑘) ∈ ℤ)) |
20 | 12, 19 | syld 47 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2) → (𝑅‘𝑘) ∈ ℤ)) |
21 | 9, 20 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝑅‘𝑘) ∈ ℤ) |
22 | 7, 21 | fprodzcl 15673 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) ∈ ℤ) |
23 | | fzfid 13702 |
. . . . 5
⊢ (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin) |
24 | 1, 2, 3, 4 | gausslemma2dlem3 26525 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
26 | | rspa 3133 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
27 | 26 | expcom 414 |
. . . . . . . 8
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅‘𝑘) = (𝑃 − (𝑘 · 2)))) |
28 | 27 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅‘𝑘) = (𝑃 − (𝑘 · 2)))) |
29 | 1 | gausslemma2dlem0a 26513 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) |
30 | 29 | nnzd 12434 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℤ) |
31 | | elfzelz 13265 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) |
32 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) |
33 | 31, 32 | zmulcld 12441 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) |
34 | | zsubcl 12371 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℤ ∧ (𝑘 · 2) ∈ ℤ)
→ (𝑃 − (𝑘 · 2)) ∈
ℤ) |
35 | 30, 33, 34 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈
ℤ) |
36 | | eleq1 2827 |
. . . . . . . 8
⊢ ((𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → ((𝑅‘𝑘) ∈ ℤ ↔ (𝑃 − (𝑘 · 2)) ∈
ℤ)) |
37 | 35, 36 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅‘𝑘) ∈ ℤ)) |
38 | 28, 37 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅‘𝑘) ∈ ℤ)) |
39 | 25, 38 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅‘𝑘) ∈ ℤ) |
40 | 23, 39 | fprodzcl 15673 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) ∈ ℤ) |
41 | 40 | zred 12435 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) ∈ ℝ) |
42 | | nnoddn2prm 16521 |
. . . 4
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℕ
∧ ¬ 2 ∥ 𝑃)) |
43 | | nnrp 12750 |
. . . . 5
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) |
44 | 43 | adantr 481 |
. . . 4
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → 𝑃 ∈
ℝ+) |
45 | 1, 42, 44 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
46 | | modmulmodr 13666 |
. . . 4
⊢
((∏𝑘 ∈
(1...𝑀)(𝑅‘𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) →
((∏𝑘 ∈
(1...𝑀)(𝑅‘𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)) mod 𝑃)) |
47 | 46 | eqcomd 2745 |
. . 3
⊢
((∏𝑘 ∈
(1...𝑀)(𝑅‘𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) →
((∏𝑘 ∈
(1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃)) mod 𝑃)) |
48 | 22, 41, 45, 47 | syl3anc 1370 |
. 2
⊢ (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃)) mod 𝑃)) |
49 | | gausslemma2d.n |
. . . . . 6
⊢ 𝑁 = (𝐻 − 𝑀) |
50 | 1, 2, 3, 4, 49 | gausslemma2dlem5 26528 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) |
51 | 50 | oveq2d 7300 |
. . . 4
⊢ (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃)) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))) |
52 | 51 | oveq1d 7299 |
. . 3
⊢ (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃)) |
53 | | neg1rr 12097 |
. . . . . . 7
⊢ -1 ∈
ℝ |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → -1 ∈
ℝ) |
55 | 1, 4, 2, 49 | gausslemma2dlem0h 26520 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
56 | 54, 55 | reexpcld 13890 |
. . . . 5
⊢ (𝜑 → (-1↑𝑁) ∈ ℝ) |
57 | 31 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ ℤ) |
58 | 14 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 2 ∈ ℤ) |
59 | 57, 58 | zmulcld 12441 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ) |
60 | 23, 59 | fprodzcl 15673 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℤ) |
61 | 60 | zred 12435 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℝ) |
62 | 56, 61 | remulcld 11014 |
. . . 4
⊢ (𝜑 → ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈
ℝ) |
63 | | modmulmodr 13666 |
. . . 4
⊢
((∏𝑘 ∈
(1...𝑀)(𝑅‘𝑘) ∈ ℤ ∧ ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+)
→ ((∏𝑘 ∈
(1...𝑀)(𝑅‘𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃)) |
64 | 22, 62, 45, 63 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃)) |
65 | 8 | prodeq2d 15641 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = ∏𝑘 ∈ (1...𝑀)(𝑘 · 2)) |
66 | 65 | oveq1d 7299 |
. . . . . . 7
⊢ (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) |
67 | | fzfid 13702 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝐻) ∈ Fin) |
68 | | elfzelz 13265 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ) |
69 | 68 | zcnd 12436 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ) |
70 | 69 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℂ) |
71 | | 2cn 12057 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
72 | 71 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → 2 ∈ ℂ) |
73 | 67, 70, 72 | fprodmul 15679 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2)) |
74 | 1, 4 | gausslemma2dlem0d 26516 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
75 | 74 | nn0red 12303 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
76 | 75 | ltp1d 11914 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
77 | | fzdisj 13292 |
. . . . . . . . . 10
⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅) |
78 | 76, 77 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅) |
79 | | 1zzd 12360 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℤ) |
80 | | nn0pzuz 12654 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 1 ∈ ℤ) → (𝑀 + 1) ∈
(ℤ≥‘1)) |
81 | 74, 79, 80 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘1)) |
82 | 74 | nn0zd 12433 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
83 | 1, 2 | gausslemma2dlem0b 26514 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ ℕ) |
84 | 83 | nnzd 12434 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ ℤ) |
85 | 1, 4, 2 | gausslemma2dlem0g 26519 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≤ 𝐻) |
86 | | eluz2 12597 |
. . . . . . . . . . 11
⊢ (𝐻 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀 ≤ 𝐻)) |
87 | 82, 84, 85, 86 | syl3anbrc 1342 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ (ℤ≥‘𝑀)) |
88 | | fzsplit2 13290 |
. . . . . . . . . 10
⊢ (((𝑀 + 1) ∈
(ℤ≥‘1) ∧ 𝐻 ∈ (ℤ≥‘𝑀)) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻))) |
89 | 81, 87, 88 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻))) |
90 | 14 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝐻) → 2 ∈ ℤ) |
91 | 68, 90 | zmulcld 12441 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℤ) |
92 | 91 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ) |
93 | 92 | zcnd 12436 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ) |
94 | 78, 89, 67, 93 | fprodsplit 15685 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) |
95 | | nnnn0 12249 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
96 | 95 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑃 ∈ ℕ0
∧ ¬ 2 ∥ 𝑃)) |
97 | 42, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈
ℕ0 ∧ ¬ 2 ∥ 𝑃)) |
98 | | nn0oddm1d2 16103 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℕ0
→ (¬ 2 ∥ 𝑃
↔ ((𝑃 − 1) / 2)
∈ ℕ0)) |
99 | 98 | biimpa 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℕ0
∧ ¬ 2 ∥ 𝑃)
→ ((𝑃 − 1) / 2)
∈ ℕ0) |
100 | 2, 99 | eqeltrid 2844 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℕ0
∧ ¬ 2 ∥ 𝑃)
→ 𝐻 ∈
ℕ0) |
101 | 1, 97, 100 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈
ℕ0) |
102 | | fprodfac 15692 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ ℕ0
→ (!‘𝐻) =
∏𝑘 ∈ (1...𝐻)𝑘) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘) |
104 | 103 | eqcomd 2745 |
. . . . . . . . . 10
⊢ (𝜑 → ∏𝑘 ∈ (1...𝐻)𝑘 = (!‘𝐻)) |
105 | | fzfi 13701 |
. . . . . . . . . . . 12
⊢
(1...𝐻) ∈
Fin |
106 | 105, 71 | pm3.2i 471 |
. . . . . . . . . . 11
⊢
((1...𝐻) ∈ Fin
∧ 2 ∈ ℂ) |
107 | | fprodconst 15697 |
. . . . . . . . . . 11
⊢
(((1...𝐻) ∈ Fin
∧ 2 ∈ ℂ) → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻)))) |
108 | 106, 107 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → ∏𝑘 ∈ (1...𝐻)2 = (2↑(♯‘(1...𝐻)))) |
109 | 104, 108 | oveq12d 7302 |
. . . . . . . . 9
⊢ (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((!‘𝐻) · (2↑(♯‘(1...𝐻))))) |
110 | | hashfz1 14069 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ ℕ0
→ (♯‘(1...𝐻)) = 𝐻) |
111 | 101, 110 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(1...𝐻)) = 𝐻) |
112 | 111 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝜑 →
(2↑(♯‘(1...𝐻))) = (2↑𝐻)) |
113 | 112 | oveq2d 7300 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘𝐻) ·
(2↑(♯‘(1...𝐻)))) = ((!‘𝐻) · (2↑𝐻))) |
114 | 101 | faccld 14007 |
. . . . . . . . . . 11
⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
115 | 114 | nncnd 11998 |
. . . . . . . . . 10
⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
116 | | 2nn0 12259 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
117 | | nn0expcl 13805 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ0 ∧ 𝐻 ∈ ℕ0) →
(2↑𝐻) ∈
ℕ0) |
118 | 117 | nn0cnd 12304 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ0 ∧ 𝐻 ∈ ℕ0) →
(2↑𝐻) ∈
ℂ) |
119 | 116, 101,
118 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑𝐻) ∈ ℂ) |
120 | 115, 119 | mulcomd 11005 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘𝐻) · (2↑𝐻)) = ((2↑𝐻) · (!‘𝐻))) |
121 | 109, 113,
120 | 3eqtrd 2783 |
. . . . . . . 8
⊢ (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((2↑𝐻) · (!‘𝐻))) |
122 | 73, 94, 121 | 3eqtr3d 2787 |
. . . . . . 7
⊢ (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻))) |
123 | 66, 122 | eqtrd 2779 |
. . . . . 6
⊢ (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻))) |
124 | 123 | oveq2d 7300 |
. . . . 5
⊢ (𝜑 → ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻)))) |
125 | 22 | zcnd 12436 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) ∈ ℂ) |
126 | 56 | recnd 11012 |
. . . . . 6
⊢ (𝜑 → (-1↑𝑁) ∈ ℂ) |
127 | 60 | zcnd 12436 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℂ) |
128 | 125, 126,
127 | mul12d 11193 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))) |
129 | 126, 119,
115 | mulassd 11007 |
. . . . 5
⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻)))) |
130 | 124, 128,
129 | 3eqtr4d 2789 |
. . . 4
⊢ (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻))) |
131 | 130 | oveq1d 7299 |
. . 3
⊢ (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
132 | 52, 64, 131 | 3eqtrd 2783 |
. 2
⊢ (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
133 | 6, 48, 132 | 3eqtrd 2783 |
1
⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |