MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsubdivbinom2 Structured version   Visualization version   GIF version

Theorem mulsubdivbinom2 14173
Description: The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsubdivbinom2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))

Proof of Theorem mulsubdivbinom2
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐴 ∈ ℂ)
21adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐴 ∈ ℂ)
3 simpl2 1193 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
4 simpl 482 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
54adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
6 mulbinom2 14134 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)))
76oveq1d 7369 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷))
87oveq1d 7369 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶))
92, 3, 5, 8syl3anc 1373 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶))
105, 2mulcld 11141 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 · 𝐴) ∈ ℂ)
1110sqcld 14055 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)↑2) ∈ ℂ)
12 2cnd 12212 . . . . . . . . . 10 (𝐶 ∈ ℂ → 2 ∈ ℂ)
13 id 22 . . . . . . . . . 10 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
1412, 13mulcld 11141 . . . . . . . . 9 (𝐶 ∈ ℂ → (2 · 𝐶) ∈ ℂ)
1514adantr 480 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (2 · 𝐶) ∈ ℂ)
1615adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (2 · 𝐶) ∈ ℂ)
17 mulcl 11099 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
18173adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
1918adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
2016, 19mulcld 11141 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ)
2111, 20addcld 11140 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 14029 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
23223ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2423adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵↑2) ∈ ℂ)
2521, 24addcld 11140 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ)
26 simpl3 1194 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐷 ∈ ℂ)
27 simpr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
28 divsubdir 11824 . . . 4 ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)))
2925, 26, 27, 28syl3anc 1373 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)))
30 divdir 11810 . . . . . 6 (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ ∧ (𝐵↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)))
3121, 24, 27, 30syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)))
32 divdir 11810 . . . . . . . 8 ((((𝐶 · 𝐴)↑2) ∈ ℂ ∧ ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)))
3311, 20, 27, 32syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)))
34 sqmul 14030 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
354, 1, 34syl2anr 597 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
3635oveq1d 7369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (((𝐶↑2) · (𝐴↑2)) / 𝐶))
37 sqcl 14029 . . . . . . . . . . . 12 (𝐶 ∈ ℂ → (𝐶↑2) ∈ ℂ)
3837adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶↑2) ∈ ℂ)
3938adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶↑2) ∈ ℂ)
40 sqcl 14029 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
41403ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
4241adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴↑2) ∈ ℂ)
43 div23 11804 . . . . . . . . . 10 (((𝐶↑2) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2)))
4439, 42, 27, 43syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2)))
45 sqdivid 14033 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶↑2) / 𝐶) = 𝐶)
4645adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶↑2) / 𝐶) = 𝐶)
4746oveq1d 7369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) / 𝐶) · (𝐴↑2)) = (𝐶 · (𝐴↑2)))
4836, 44, 473eqtrd 2772 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (𝐶 · (𝐴↑2)))
49 div23 11804 . . . . . . . . . 10 (((2 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)))
5016, 19, 27, 49syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)))
51 2cnd 12212 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 2 ∈ ℂ)
52 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
5351, 4, 52divcan4d 11912 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((2 · 𝐶) / 𝐶) = 2)
5453adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((2 · 𝐶) / 𝐶) = 2)
5554oveq1d 7369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)) = (2 · (𝐴 · 𝐵)))
5650, 55eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (2 · (𝐴 · 𝐵)))
5748, 56oveq12d 7372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))))
5833, 57eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))))
5958oveq1d 7369 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)))
6031, 59eqtrd 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)))
6160oveq1d 7369 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)) = ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)))
625, 42mulcld 11141 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 · (𝐴↑2)) ∈ ℂ)
63 2cnd 12212 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
6463, 17mulcld 11141 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
65643adant3 1132 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
6665adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
6762, 66addcld 11140 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
6852adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
6924, 5, 68divcld 11906 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵↑2) / 𝐶) ∈ ℂ)
7026, 5, 68divcld 11906 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐷 / 𝐶) ∈ ℂ)
7167, 69, 70addsubassd 11501 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))))
7229, 61, 713eqtrd 2772 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))))
73 divsubdir 11824 . . . . 5 (((𝐵↑2) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))
7424, 26, 27, 73syl3anc 1373 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))
7574eqcomd 2739 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)) = (((𝐵↑2) − 𝐷) / 𝐶))
7675oveq2d 7370 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))
779, 72, 763eqtrd 2772 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7354  cc 11013  0cc0 11015   + caddc 11018   · cmul 11020  cmin 11353   / cdiv 11783  2c2 12189  cexp 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-seq 13913  df-exp 13973
This theorem is referenced by:  muldivbinom2  14174  2lgsoddprmlem1  27349
  Copyright terms: Public domain W3C validator