MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsubdivbinom2 Structured version   Visualization version   GIF version

Theorem mulsubdivbinom2 14234
Description: The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsubdivbinom2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))

Proof of Theorem mulsubdivbinom2
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐴 ∈ ℂ)
21adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐴 ∈ ℂ)
3 simpl2 1193 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
4 simpl 482 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
54adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
6 mulbinom2 14195 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)))
76oveq1d 7405 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷))
87oveq1d 7405 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶))
92, 3, 5, 8syl3anc 1373 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶))
105, 2mulcld 11201 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 · 𝐴) ∈ ℂ)
1110sqcld 14116 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)↑2) ∈ ℂ)
12 2cnd 12271 . . . . . . . . . 10 (𝐶 ∈ ℂ → 2 ∈ ℂ)
13 id 22 . . . . . . . . . 10 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
1412, 13mulcld 11201 . . . . . . . . 9 (𝐶 ∈ ℂ → (2 · 𝐶) ∈ ℂ)
1514adantr 480 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (2 · 𝐶) ∈ ℂ)
1615adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (2 · 𝐶) ∈ ℂ)
17 mulcl 11159 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
18173adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
1918adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
2016, 19mulcld 11201 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ)
2111, 20addcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 14090 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
23223ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2423adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵↑2) ∈ ℂ)
2521, 24addcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ)
26 simpl3 1194 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐷 ∈ ℂ)
27 simpr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
28 divsubdir 11883 . . . 4 ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)))
2925, 26, 27, 28syl3anc 1373 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)))
30 divdir 11869 . . . . . 6 (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ ∧ (𝐵↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)))
3121, 24, 27, 30syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)))
32 divdir 11869 . . . . . . . 8 ((((𝐶 · 𝐴)↑2) ∈ ℂ ∧ ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)))
3311, 20, 27, 32syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)))
34 sqmul 14091 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
354, 1, 34syl2anr 597 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
3635oveq1d 7405 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (((𝐶↑2) · (𝐴↑2)) / 𝐶))
37 sqcl 14090 . . . . . . . . . . . 12 (𝐶 ∈ ℂ → (𝐶↑2) ∈ ℂ)
3837adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶↑2) ∈ ℂ)
3938adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶↑2) ∈ ℂ)
40 sqcl 14090 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
41403ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
4241adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴↑2) ∈ ℂ)
43 div23 11863 . . . . . . . . . 10 (((𝐶↑2) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2)))
4439, 42, 27, 43syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2)))
45 sqdivid 14094 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶↑2) / 𝐶) = 𝐶)
4645adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶↑2) / 𝐶) = 𝐶)
4746oveq1d 7405 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) / 𝐶) · (𝐴↑2)) = (𝐶 · (𝐴↑2)))
4836, 44, 473eqtrd 2769 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (𝐶 · (𝐴↑2)))
49 div23 11863 . . . . . . . . . 10 (((2 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)))
5016, 19, 27, 49syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)))
51 2cnd 12271 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 2 ∈ ℂ)
52 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
5351, 4, 52divcan4d 11971 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((2 · 𝐶) / 𝐶) = 2)
5453adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((2 · 𝐶) / 𝐶) = 2)
5554oveq1d 7405 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)) = (2 · (𝐴 · 𝐵)))
5650, 55eqtrd 2765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (2 · (𝐴 · 𝐵)))
5748, 56oveq12d 7408 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))))
5833, 57eqtrd 2765 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))))
5958oveq1d 7405 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)))
6031, 59eqtrd 2765 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)))
6160oveq1d 7405 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)) = ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)))
625, 42mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 · (𝐴↑2)) ∈ ℂ)
63 2cnd 12271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
6463, 17mulcld 11201 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
65643adant3 1132 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
6665adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
6762, 66addcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
6852adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
6924, 5, 68divcld 11965 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵↑2) / 𝐶) ∈ ℂ)
7026, 5, 68divcld 11965 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐷 / 𝐶) ∈ ℂ)
7167, 69, 70addsubassd 11560 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))))
7229, 61, 713eqtrd 2769 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))))
73 divsubdir 11883 . . . . 5 (((𝐵↑2) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))
7424, 26, 27, 73syl3anc 1373 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))
7574eqcomd 2736 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)) = (((𝐵↑2) − 𝐷) / 𝐶))
7675oveq2d 7406 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))
779, 72, 763eqtrd 2769 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  2c2 12248  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by:  muldivbinom2  14235  2lgsoddprmlem1  27326
  Copyright terms: Public domain W3C validator