MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsubdivbinom2 Structured version   Visualization version   GIF version

Theorem mulsubdivbinom2 13622
Description: The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsubdivbinom2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))

Proof of Theorem mulsubdivbinom2
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐴 ∈ ℂ)
21adantr 484 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐴 ∈ ℂ)
3 simpl2 1189 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
4 simpl 486 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
54adantl 485 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
6 mulbinom2 13584 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)))
76oveq1d 7154 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷))
87oveq1d 7154 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶))
92, 3, 5, 8syl3anc 1368 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶))
105, 2mulcld 10654 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 · 𝐴) ∈ ℂ)
1110sqcld 13508 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)↑2) ∈ ℂ)
12 2cnd 11707 . . . . . . . . . 10 (𝐶 ∈ ℂ → 2 ∈ ℂ)
13 id 22 . . . . . . . . . 10 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
1412, 13mulcld 10654 . . . . . . . . 9 (𝐶 ∈ ℂ → (2 · 𝐶) ∈ ℂ)
1514adantr 484 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (2 · 𝐶) ∈ ℂ)
1615adantl 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (2 · 𝐶) ∈ ℂ)
17 mulcl 10614 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
18173adant3 1129 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
1918adantr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
2016, 19mulcld 10654 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ)
2111, 20addcld 10653 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 13484 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
23223ad2ant2 1131 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2423adantr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵↑2) ∈ ℂ)
2521, 24addcld 10653 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ)
26 simpl3 1190 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐷 ∈ ℂ)
27 simpr 488 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
28 divsubdir 11327 . . . 4 ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)))
2925, 26, 27, 28syl3anc 1368 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)))
30 divdir 11316 . . . . . 6 (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ ∧ (𝐵↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)))
3121, 24, 27, 30syl3anc 1368 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)))
32 divdir 11316 . . . . . . . 8 ((((𝐶 · 𝐴)↑2) ∈ ℂ ∧ ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)))
3311, 20, 27, 32syl3anc 1368 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)))
34 sqmul 13485 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
354, 1, 34syl2anr 599 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
3635oveq1d 7154 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (((𝐶↑2) · (𝐴↑2)) / 𝐶))
37 sqcl 13484 . . . . . . . . . . . 12 (𝐶 ∈ ℂ → (𝐶↑2) ∈ ℂ)
3837adantr 484 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶↑2) ∈ ℂ)
3938adantl 485 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶↑2) ∈ ℂ)
40 sqcl 13484 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
41403ad2ant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
4241adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴↑2) ∈ ℂ)
43 div23 11310 . . . . . . . . . 10 (((𝐶↑2) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2)))
4439, 42, 27, 43syl3anc 1368 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2)))
45 sqdivid 13488 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶↑2) / 𝐶) = 𝐶)
4645adantl 485 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶↑2) / 𝐶) = 𝐶)
4746oveq1d 7154 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶↑2) / 𝐶) · (𝐴↑2)) = (𝐶 · (𝐴↑2)))
4836, 44, 473eqtrd 2840 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (𝐶 · (𝐴↑2)))
49 div23 11310 . . . . . . . . . 10 (((2 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)))
5016, 19, 27, 49syl3anc 1368 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)))
51 2cnd 11707 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 2 ∈ ℂ)
52 simpr 488 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
5351, 4, 52divcan4d 11415 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((2 · 𝐶) / 𝐶) = 2)
5453adantl 485 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((2 · 𝐶) / 𝐶) = 2)
5554oveq1d 7154 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵)) = (2 · (𝐴 · 𝐵)))
5650, 55eqtrd 2836 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶) = (2 · (𝐴 · 𝐵)))
5748, 56oveq12d 7157 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))))
5833, 57eqtrd 2836 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))))
5958oveq1d 7154 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)))
6031, 59eqtrd 2836 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)))
6160oveq1d 7154 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)) = ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)))
625, 42mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐶 · (𝐴↑2)) ∈ ℂ)
63 2cnd 11707 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
6463, 17mulcld 10654 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
65643adant3 1129 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
6665adantr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
6762, 66addcld 10653 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
6852adantl 485 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
6924, 5, 68divcld 11409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵↑2) / 𝐶) ∈ ℂ)
7026, 5, 68divcld 11409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐷 / 𝐶) ∈ ℂ)
7167, 69, 70addsubassd 11010 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))))
7229, 61, 713eqtrd 2840 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))))
73 divsubdir 11327 . . . . 5 (((𝐵↑2) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))
7424, 26, 27, 73syl3anc 1368 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))
7574eqcomd 2807 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)) = (((𝐵↑2) − 𝐷) / 𝐶))
7675oveq2d 7155 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))
779, 72, 763eqtrd 2840 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  (class class class)co 7139  cc 10528  0cc0 10530   + caddc 10533   · cmul 10535  cmin 10863   / cdiv 11290  2c2 11684  cexp 13429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369  df-exp 13430
This theorem is referenced by:  muldivbinom2  13623  2lgsoddprmlem1  25996
  Copyright terms: Public domain W3C validator