MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtmul Structured version   Visualization version   GIF version

Theorem sqrtmul 15205
Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
sqrtmul (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) = ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต)))

Proof of Theorem sqrtmul
StepHypRef Expression
1 simpll 765 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ด โˆˆ โ„)
2 simprl 769 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ต โˆˆ โ„)
31, 2remulcld 11243 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด ยท ๐ต) โˆˆ โ„)
4 mulge0 11731 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (๐ด ยท ๐ต))
5 resqrtcl 15199 . . 3 (((๐ด ยท ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ด ยท ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„)
63, 4, 5syl2anc 584 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„)
7 resqrtcl 15199 . . . 4 ((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (โˆšโ€˜๐ด) โˆˆ โ„)
87adantr 481 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜๐ด) โˆˆ โ„)
9 resqrtcl 15199 . . . 4 ((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โ†’ (โˆšโ€˜๐ต) โˆˆ โ„)
109adantl 482 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜๐ต) โˆˆ โ„)
118, 10remulcld 11243 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต)) โˆˆ โ„)
12 sqrtge0 15203 . . 3 (((๐ด ยท ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ด ยท ๐ต)) โ†’ 0 โ‰ค (โˆšโ€˜(๐ด ยท ๐ต)))
133, 4, 12syl2anc 584 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (โˆšโ€˜(๐ด ยท ๐ต)))
14 sqrtge0 15203 . . . 4 ((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ 0 โ‰ค (โˆšโ€˜๐ด))
1514adantr 481 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (โˆšโ€˜๐ด))
16 sqrtge0 15203 . . . 4 ((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โ†’ 0 โ‰ค (โˆšโ€˜๐ต))
1716adantl 482 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (โˆšโ€˜๐ต))
188, 10, 15, 17mulge0d 11790 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต)))
19 resqrtth 15201 . . . 4 ((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ ((โˆšโ€˜๐ด)โ†‘2) = ๐ด)
20 resqrtth 15201 . . . 4 ((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โ†’ ((โˆšโ€˜๐ต)โ†‘2) = ๐ต)
2119, 20oveqan12d 7427 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((โˆšโ€˜๐ด)โ†‘2) ยท ((โˆšโ€˜๐ต)โ†‘2)) = (๐ด ยท ๐ต))
228recnd 11241 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜๐ด) โˆˆ โ„‚)
2310recnd 11241 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜๐ต) โˆˆ โ„‚)
2422, 23sqmuld 14122 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต))โ†‘2) = (((โˆšโ€˜๐ด)โ†‘2) ยท ((โˆšโ€˜๐ต)โ†‘2)))
25 resqrtth 15201 . . . 4 (((๐ด ยท ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ด ยท ๐ต)) โ†’ ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2) = (๐ด ยท ๐ต))
263, 4, 25syl2anc 584 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2) = (๐ด ยท ๐ต))
2721, 24, 263eqtr4rd 2783 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2) = (((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต))โ†‘2))
286, 11, 13, 18, 27sq11d 14220 1 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) = ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106   class class class wbr 5148  โ€˜cfv 6543  (class class class)co 7408  โ„cr 11108  0cc0 11109   ยท cmul 11114   โ‰ค cle 11248  2c2 12266  โ†‘cexp 14026  โˆšcsqrt 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181
This theorem is referenced by:  sqrtdiv  15211  absmul  15240  sqrtmuli  15331  sqrtmuld  15370  bposlem9  26792  dchrisum0lem3  27019  rrndistlt  44996  itsclc0yqsollem2  47439
  Copyright terms: Public domain W3C validator