![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnn0cld | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 19084. (Contributed by SN, 1-Feb-2025.) |
Ref | Expression |
---|---|
mulgnn0cld.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnn0cld.t | ⊢ · = (.g‘𝐺) |
mulgnn0cld.m | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
mulgnn0cld.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mulgnn0cld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
mulgnn0cld | ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnn0cld.m | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | mulgnn0cld.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | mulgnn0cld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | mulgnn0cld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | mulgnn0cld.t | . . 3 ⊢ · = (.g‘𝐺) | |
6 | 4, 5 | mulgnn0cl 19084 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
7 | 1, 2, 3, 6 | syl3anc 1368 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |