MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcl Structured version   Visualization version   GIF version

Theorem mulgcl 19006
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
Assertion
Ref Expression
mulgcl ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)

Proof of Theorem mulgcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnncl.b . 2 𝐵 = (Base‘𝐺)
2 mulgnncl.t . 2 · = (.g𝐺)
3 eqid 2733 . 2 (+g𝐺) = (+g𝐺)
4 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5 ssidd 3954 . 2 (𝐺 ∈ Grp → 𝐵𝐵)
61, 3grpcl 18856 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
7 eqid 2733 . 2 (0g𝐺) = (0g𝐺)
81, 7grpidcl 18880 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
9 eqid 2733 . 2 (invg𝐺) = (invg𝐺)
101, 9grpinvcl 18902 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mulgsubcl 19003 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  cz 12475  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Grpcgrp 18848  invgcminusg 18849  .gcmg 18982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-mulg 18983
This theorem is referenced by:  mulgneg  19007  mulgnegneg  19008  mulgcld  19011  mulgaddcomlem  19012  mulgaddcom  19013  mulginvcom  19014  mulgdirlem  19020  mulgdir  19021  mulgass  19026  mulgmodid  19028  mulgsubdir  19029  cycsubgcl  19120  ghmmulg  19142  odmod  19460  odcong  19463  odmulgid  19468  odmulg  19470  odmulgeq  19471  odbezout  19472  odf1  19476  dfod2  19478  odf1o2  19487  gexdvds  19498  mulgdi  19740  mulgghm  19742  mulgsubdi  19743  odadd2  19763  gexexlem  19766  iscyggen2  19795  cyggenod  19798  iscyg3  19800  ablfacrp  19982  pgpfac1lem2  19991  pgpfac1lem3a  19992  pgpfac1lem3  19993  pgpfac1lem4  19994  mulgass2  20229  mulgghm2  21415  mulgrhm  21416  zlmlmod  21461  cygznlem2a  21506  freshmansdream  21513  isarchi3  33163  archirng  33164  archirngz  33165  archiabllem1a  33167  archiabllem2c  33171  isarchiofld  33175
  Copyright terms: Public domain W3C validator