Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnncl.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulgcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
3 | eqid 2739 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
5 | ssidd 3945 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
6 | 1, 3 | grpcl 18594 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
7 | eqid 2739 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 1, 7 | grpidcl 18616 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
9 | eqid 2739 | . 2 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | 1, 9 | grpinvcl 18636 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mulgsubcl 18727 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 (class class class)co 7284 ℤcz 12328 Basecbs 16921 +gcplusg 16971 0gc0g 17159 Grpcgrp 18586 invgcminusg 18587 .gcmg 18709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-seq 13731 df-0g 17161 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 df-minusg 18590 df-mulg 18710 |
This theorem is referenced by: mulgneg 18731 mulgnegneg 18732 mulgcld 18734 mulgaddcomlem 18735 mulgaddcom 18736 mulginvcom 18737 mulgdirlem 18743 mulgdir 18744 mulgass 18749 mulgmodid 18751 mulgsubdir 18752 cycsubgcl 18834 ghmmulg 18855 odmod 19163 odcong 19166 odmulgid 19170 odmulg 19172 odmulgeq 19173 odbezout 19174 odf1 19178 dfod2 19180 odf1o2 19187 gexdvds 19198 mulgdi 19437 mulgghm 19439 mulgsubdi 19440 odadd2 19459 gexexlem 19462 iscyggen2 19490 cyggenod 19493 iscyg3 19495 ablfacrp 19678 pgpfac1lem2 19687 pgpfac1lem3a 19688 pgpfac1lem3 19689 pgpfac1lem4 19690 mulgass2 19849 mulgghm2 20707 mulgrhm 20708 zlmlmod 20737 cygznlem2a 20784 isarchi3 31450 archirng 31451 archirngz 31452 archiabllem1a 31454 archiabllem2c 31458 freshmansdream 31493 isarchiofld 31525 |
Copyright terms: Public domain | W3C validator |