| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgcl | Structured version Visualization version GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnncl.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
| 3 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 5 | ssidd 3982 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3 | grpcl 18922 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 7 | eqid 2735 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 1, 7 | grpidcl 18946 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 9 | eqid 2735 | . 2 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 10 | 1, 9 | grpinvcl 18968 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mulgsubcl 19069 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ℤcz 12586 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Grpcgrp 18914 invgcminusg 18915 .gcmg 19048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-seq 14018 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-mulg 19049 |
| This theorem is referenced by: mulgneg 19073 mulgnegneg 19074 mulgcld 19077 mulgaddcomlem 19078 mulgaddcom 19079 mulginvcom 19080 mulgdirlem 19086 mulgdir 19087 mulgass 19092 mulgmodid 19094 mulgsubdir 19095 cycsubgcl 19187 ghmmulg 19209 odmod 19525 odcong 19528 odmulgid 19533 odmulg 19535 odmulgeq 19536 odbezout 19537 odf1 19541 dfod2 19543 odf1o2 19552 gexdvds 19563 mulgdi 19805 mulgghm 19807 mulgsubdi 19808 odadd2 19828 gexexlem 19831 iscyggen2 19860 cyggenod 19863 iscyg3 19865 ablfacrp 20047 pgpfac1lem2 20056 pgpfac1lem3a 20057 pgpfac1lem3 20058 pgpfac1lem4 20059 mulgass2 20267 mulgghm2 21435 mulgrhm 21436 zlmlmod 21481 cygznlem2a 21526 freshmansdream 21533 isarchi3 33131 archirng 33132 archirngz 33133 archiabllem1a 33135 archiabllem2c 33139 isarchiofld 33285 |
| Copyright terms: Public domain | W3C validator |