![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnncl.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulgcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
3 | eqid 2825 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
5 | ssidd 3849 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
6 | 1, 3 | grpcl 17784 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
7 | eqid 2825 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 1, 7 | grpidcl 17804 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
9 | eqid 2825 | . 2 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | 1, 9 | grpinvcl 17821 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mulgsubcl 17909 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 ℤcz 11704 Basecbs 16222 +gcplusg 16305 0gc0g 16453 Grpcgrp 17776 invgcminusg 17777 .gcmg 17894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-seq 13096 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 df-mulg 17895 |
This theorem is referenced by: mulgneg 17913 mulgnegneg 17914 mulgaddcomlem 17916 mulgaddcom 17917 mulginvcom 17918 mulgdirlem 17924 mulgdir 17925 mulgass 17930 mulgmodid 17932 mulgsubdir 17933 cycsubgcl 17971 ghmmulg 18023 odmod 18316 odcong 18319 odmulgid 18322 odmulg 18324 odmulgeq 18325 odbezout 18326 odf1 18330 dfod2 18332 odf1o2 18339 gexdvds 18350 mulgdi 18585 mulgghm 18587 mulgsubdi 18588 odadd2 18605 gexexlem 18608 iscyggen2 18636 cyggenod 18639 iscyg3 18641 ablfacrp 18819 pgpfac1lem2 18828 pgpfac1lem3a 18829 pgpfac1lem3 18830 pgpfac1lem4 18831 mulgass2 18955 mulgghm2 20205 mulgrhm 20206 zlmlmod 20231 cygznlem2a 20275 zrhpsgnelbas 20300 isarchi3 30286 archirng 30287 archirngz 30288 archiabllem1a 30290 archiabllem2c 30294 isarchiofld 30362 |
Copyright terms: Public domain | W3C validator |