| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgcl | Structured version Visualization version GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnncl.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 5 | ssidd 3961 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3 | grpcl 18838 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 7 | eqid 2729 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 1, 7 | grpidcl 18862 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 9 | eqid 2729 | . 2 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 10 | 1, 9 | grpinvcl 18884 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mulgsubcl 18985 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℤcz 12489 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 invgcminusg 18831 .gcmg 18964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-mulg 18965 |
| This theorem is referenced by: mulgneg 18989 mulgnegneg 18990 mulgcld 18993 mulgaddcomlem 18994 mulgaddcom 18995 mulginvcom 18996 mulgdirlem 19002 mulgdir 19003 mulgass 19008 mulgmodid 19010 mulgsubdir 19011 cycsubgcl 19103 ghmmulg 19125 odmod 19443 odcong 19446 odmulgid 19451 odmulg 19453 odmulgeq 19454 odbezout 19455 odf1 19459 dfod2 19461 odf1o2 19470 gexdvds 19481 mulgdi 19723 mulgghm 19725 mulgsubdi 19726 odadd2 19746 gexexlem 19749 iscyggen2 19778 cyggenod 19781 iscyg3 19783 ablfacrp 19965 pgpfac1lem2 19974 pgpfac1lem3a 19975 pgpfac1lem3 19976 pgpfac1lem4 19977 mulgass2 20212 mulgghm2 21401 mulgrhm 21402 zlmlmod 21447 cygznlem2a 21492 freshmansdream 21499 isarchi3 33139 archirng 33140 archirngz 33141 archiabllem1a 33143 archiabllem2c 33147 isarchiofld 33151 |
| Copyright terms: Public domain | W3C validator |