MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcl Structured version   Visualization version   GIF version

Theorem mulgcl 19030
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
Assertion
Ref Expression
mulgcl ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)

Proof of Theorem mulgcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnncl.b . 2 𝐵 = (Base‘𝐺)
2 mulgnncl.t . 2 · = (.g𝐺)
3 eqid 2730 . 2 (+g𝐺) = (+g𝐺)
4 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5 ssidd 3973 . 2 (𝐺 ∈ Grp → 𝐵𝐵)
61, 3grpcl 18880 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
7 eqid 2730 . 2 (0g𝐺) = (0g𝐺)
81, 7grpidcl 18904 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
9 eqid 2730 . 2 (invg𝐺) = (invg𝐺)
101, 9grpinvcl 18926 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mulgsubcl 19027 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cz 12536  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  .gcmg 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007
This theorem is referenced by:  mulgneg  19031  mulgnegneg  19032  mulgcld  19035  mulgaddcomlem  19036  mulgaddcom  19037  mulginvcom  19038  mulgdirlem  19044  mulgdir  19045  mulgass  19050  mulgmodid  19052  mulgsubdir  19053  cycsubgcl  19145  ghmmulg  19167  odmod  19483  odcong  19486  odmulgid  19491  odmulg  19493  odmulgeq  19494  odbezout  19495  odf1  19499  dfod2  19501  odf1o2  19510  gexdvds  19521  mulgdi  19763  mulgghm  19765  mulgsubdi  19766  odadd2  19786  gexexlem  19789  iscyggen2  19818  cyggenod  19821  iscyg3  19823  ablfacrp  20005  pgpfac1lem2  20014  pgpfac1lem3a  20015  pgpfac1lem3  20016  pgpfac1lem4  20017  mulgass2  20225  mulgghm2  21393  mulgrhm  21394  zlmlmod  21439  cygznlem2a  21484  freshmansdream  21491  isarchi3  33148  archirng  33149  archirngz  33150  archiabllem1a  33152  archiabllem2c  33156  isarchiofld  33302
  Copyright terms: Public domain W3C validator