MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcl Structured version   Visualization version   GIF version

Theorem mulgcl 18988
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
Assertion
Ref Expression
mulgcl ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)

Proof of Theorem mulgcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnncl.b . 2 𝐵 = (Base‘𝐺)
2 mulgnncl.t . 2 · = (.g𝐺)
3 eqid 2729 . 2 (+g𝐺) = (+g𝐺)
4 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5 ssidd 3961 . 2 (𝐺 ∈ Grp → 𝐵𝐵)
61, 3grpcl 18838 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
7 eqid 2729 . 2 (0g𝐺) = (0g𝐺)
81, 7grpidcl 18862 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
9 eqid 2729 . 2 (invg𝐺) = (invg𝐺)
101, 9grpinvcl 18884 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mulgsubcl 18985 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cz 12489  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831  .gcmg 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mulg 18965
This theorem is referenced by:  mulgneg  18989  mulgnegneg  18990  mulgcld  18993  mulgaddcomlem  18994  mulgaddcom  18995  mulginvcom  18996  mulgdirlem  19002  mulgdir  19003  mulgass  19008  mulgmodid  19010  mulgsubdir  19011  cycsubgcl  19103  ghmmulg  19125  odmod  19443  odcong  19446  odmulgid  19451  odmulg  19453  odmulgeq  19454  odbezout  19455  odf1  19459  dfod2  19461  odf1o2  19470  gexdvds  19481  mulgdi  19723  mulgghm  19725  mulgsubdi  19726  odadd2  19746  gexexlem  19749  iscyggen2  19778  cyggenod  19781  iscyg3  19783  ablfacrp  19965  pgpfac1lem2  19974  pgpfac1lem3a  19975  pgpfac1lem3  19976  pgpfac1lem4  19977  mulgass2  20212  mulgghm2  21401  mulgrhm  21402  zlmlmod  21447  cygznlem2a  21492  freshmansdream  21499  isarchi3  33139  archirng  33140  archirngz  33141  archiabllem1a  33143  archiabllem2c  33147  isarchiofld  33151
  Copyright terms: Public domain W3C validator