MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc2 Structured version   Visualization version   GIF version

Theorem modcyc2 13905
Description: The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modcyc2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modcyc2
StepHypRef Expression
1 recn 11229 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 rpcn 13017 . . . 4 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
3 zcn 12594 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4 mulneg1 11681 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝑁 · 𝐵))
54ancoms 458 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝑁 · 𝐵))
6 mulcom 11225 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
76negeqd 11485 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → -(𝐵 · 𝑁) = -(𝑁 · 𝐵))
85, 7eqtr4d 2771 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝐵 · 𝑁))
983adant1 1128 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝐵 · 𝑁))
109oveq2d 7436 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (-𝑁 · 𝐵)) = (𝐴 + -(𝐵 · 𝑁)))
11 mulcl 11223 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐵 · 𝑁) ∈ ℂ)
12 negsub 11539 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑁) ∈ ℂ) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁)))
1311, 12sylan2 592 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁)))
14133impb 1113 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁)))
1510, 14eqtr2d 2769 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 − (𝐵 · 𝑁)) = (𝐴 + (-𝑁 · 𝐵)))
161, 2, 3, 15syl3an 1158 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴 − (𝐵 · 𝑁)) = (𝐴 + (-𝑁 · 𝐵)))
1716oveq1d 7435 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵))
18 znegcl 12628 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
19 modcyc 13904 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ -𝑁 ∈ ℤ) → ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
2018, 19syl3an3 1163 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
2117, 20eqtrd 2768 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  (class class class)co 7420  cc 11137  cr 11138   + caddc 11142   · cmul 11144  cmin 11475  -cneg 11476  cz 12589  +crp 13007   mod cmo 13867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fl 13790  df-mod 13868
This theorem is referenced by:  modadd1  13906  modmul1  13922  2submod  13930  modsubdir  13938
  Copyright terms: Public domain W3C validator