![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modcyc2 | Structured version Visualization version GIF version |
Description: The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.) |
Ref | Expression |
---|---|
modcyc2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11229 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | rpcn 13017 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
3 | zcn 12594 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
4 | mulneg1 11681 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝑁 · 𝐵)) | |
5 | 4 | ancoms 458 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝑁 · 𝐵)) |
6 | mulcom 11225 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐵 · 𝑁) = (𝑁 · 𝐵)) | |
7 | 6 | negeqd 11485 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → -(𝐵 · 𝑁) = -(𝑁 · 𝐵)) |
8 | 5, 7 | eqtr4d 2771 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝐵 · 𝑁)) |
9 | 8 | 3adant1 1128 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑁 · 𝐵) = -(𝐵 · 𝑁)) |
10 | 9 | oveq2d 7436 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (-𝑁 · 𝐵)) = (𝐴 + -(𝐵 · 𝑁))) |
11 | mulcl 11223 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐵 · 𝑁) ∈ ℂ) | |
12 | negsub 11539 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑁) ∈ ℂ) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁))) | |
13 | 11, 12 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁))) |
14 | 13 | 3impb 1113 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁))) |
15 | 10, 14 | eqtr2d 2769 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 − (𝐵 · 𝑁)) = (𝐴 + (-𝑁 · 𝐵))) |
16 | 1, 2, 3, 15 | syl3an 1158 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴 − (𝐵 · 𝑁)) = (𝐴 + (-𝑁 · 𝐵))) |
17 | 16 | oveq1d 7435 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵)) |
18 | znegcl 12628 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
19 | modcyc 13904 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ -𝑁 ∈ ℤ) → ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | |
20 | 18, 19 | syl3an3 1163 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) |
21 | 17, 20 | eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11137 ℝcr 11138 + caddc 11142 · cmul 11144 − cmin 11475 -cneg 11476 ℤcz 12589 ℝ+crp 13007 mod cmo 13867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fl 13790 df-mod 13868 |
This theorem is referenced by: modadd1 13906 modmul1 13922 2submod 13930 modsubdir 13938 |
Copyright terms: Public domain | W3C validator |