![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0o | Structured version Visualization version GIF version |
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
nn0o | ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0o1gt2 16330 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | |
2 | 1m1e0 12290 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
3 | 2 | oveq1i 7423 | . . . . . . 7 ⊢ ((1 − 1) / 2) = (0 / 2) |
4 | 2cn 12293 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
5 | 2ne0 12322 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
6 | 4, 5 | div0i 11954 | . . . . . . 7 ⊢ (0 / 2) = 0 |
7 | 3, 6 | eqtri 2758 | . . . . . 6 ⊢ ((1 − 1) / 2) = 0 |
8 | 0nn0 12493 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
9 | 7, 8 | eqeltri 2827 | . . . . 5 ⊢ ((1 − 1) / 2) ∈ ℕ0 |
10 | oveq1 7420 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
11 | 10 | oveq1d 7428 | . . . . . . 7 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2)) |
12 | 11 | eleq1d 2816 | . . . . . 6 ⊢ (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
13 | 12 | adantr 479 | . . . . 5 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
14 | 9, 13 | mpbiri 257 | . . . 4 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
15 | 14 | ex 411 | . . 3 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
16 | 2z 12600 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ) |
18 | nn0z 12589 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antrl 724 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ) |
20 | 2re 12292 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
21 | nn0re 12487 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
22 | ltle 11308 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁)) | |
23 | 20, 21, 22 | sylancr 585 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁)) |
24 | 23 | adantr 479 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁)) |
25 | 24 | impcom 406 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁) |
26 | eluz2 12834 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
27 | 17, 19, 25, 26 | syl3anbrc 1341 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ≥‘2)) |
28 | simprr 769 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0) | |
29 | 27, 28 | jca 510 | . . . . 5 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) |
30 | nno 16331 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | |
31 | nnnn0 12485 | . . . . 5 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0) | |
32 | 29, 30, 31 | 3syl 18 | . . . 4 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
33 | 32 | ex 411 | . . 3 ⊢ (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
34 | 15, 33 | jaoi 853 | . 2 ⊢ ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
35 | 1, 34 | mpcom 38 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 class class class wbr 5149 ‘cfv 6544 (class class class)co 7413 ℝcr 11113 0cc0 11114 1c1 11115 + caddc 11117 < clt 11254 ≤ cle 11255 − cmin 11450 / cdiv 11877 ℕcn 12218 2c2 12273 ℕ0cn0 12478 ℤcz 12564 ℤ≥cuz 12828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-n0 12479 df-z 12565 df-uz 12829 df-rp 12981 |
This theorem is referenced by: nn0ob 16333 nn0onn0ex 47298 nneom 47302 flnn0div2ge 47308 flnn0ohalf 47309 |
Copyright terms: Public domain | W3C validator |