MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o Structured version   Visualization version   GIF version

Theorem nn0o 16353
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 16351 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
2 1m1e0 12258 . . . . . . . 8 (1 − 1) = 0
32oveq1i 7397 . . . . . . 7 ((1 − 1) / 2) = (0 / 2)
4 2cn 12261 . . . . . . . 8 2 ∈ ℂ
5 2ne0 12290 . . . . . . . 8 2 ≠ 0
64, 5div0i 11916 . . . . . . 7 (0 / 2) = 0
73, 6eqtri 2752 . . . . . 6 ((1 − 1) / 2) = 0
8 0nn0 12457 . . . . . 6 0 ∈ ℕ0
97, 8eqeltri 2824 . . . . 5 ((1 − 1) / 2) ∈ ℕ0
10 oveq1 7394 . . . . . . . 8 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
1110oveq1d 7402 . . . . . . 7 (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2))
1211eleq1d 2813 . . . . . 6 (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
1312adantr 480 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
149, 13mpbiri 258 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
1514ex 412 . . 3 (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
16 2z 12565 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ)
18 nn0z 12554 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1918ad2antrl 728 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ)
20 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
21 nn0re 12451 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
22 ltle 11262 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
2320, 21, 22sylancr 587 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁))
2423adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁))
2524impcom 407 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁)
26 eluz2 12799 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2717, 19, 25, 26syl3anbrc 1344 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ‘2))
28 simprr 772 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0)
2927, 28jca 511 . . . . 5 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0))
30 nno 16352 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
31 nnnn0 12449 . . . . 5 (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0)
3229, 30, 313syl 18 . . . 4 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
3332ex 412 . . 3 (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
3415, 33jaoi 857 . 2 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
351, 34mpcom 38 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952
This theorem is referenced by:  nn0ob  16354  nn0onn0ex  48512  nneom  48516  flnn0div2ge  48522  flnn0ohalf  48523
  Copyright terms: Public domain W3C validator