MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o Structured version   Visualization version   GIF version

Theorem nn0o 16329
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 16327 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
2 1m1e0 12234 . . . . . . . 8 (1 − 1) = 0
32oveq1i 7379 . . . . . . 7 ((1 − 1) / 2) = (0 / 2)
4 2cn 12237 . . . . . . . 8 2 ∈ ℂ
5 2ne0 12266 . . . . . . . 8 2 ≠ 0
64, 5div0i 11892 . . . . . . 7 (0 / 2) = 0
73, 6eqtri 2752 . . . . . 6 ((1 − 1) / 2) = 0
8 0nn0 12433 . . . . . 6 0 ∈ ℕ0
97, 8eqeltri 2824 . . . . 5 ((1 − 1) / 2) ∈ ℕ0
10 oveq1 7376 . . . . . . . 8 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
1110oveq1d 7384 . . . . . . 7 (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2))
1211eleq1d 2813 . . . . . 6 (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
1312adantr 480 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
149, 13mpbiri 258 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
1514ex 412 . . 3 (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
16 2z 12541 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ)
18 nn0z 12530 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1918ad2antrl 728 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ)
20 2re 12236 . . . . . . . . . 10 2 ∈ ℝ
21 nn0re 12427 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
22 ltle 11238 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
2320, 21, 22sylancr 587 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁))
2423adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁))
2524impcom 407 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁)
26 eluz2 12775 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2717, 19, 25, 26syl3anbrc 1344 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ‘2))
28 simprr 772 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0)
2927, 28jca 511 . . . . 5 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0))
30 nno 16328 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
31 nnnn0 12425 . . . . 5 (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0)
3229, 30, 313syl 18 . . . 4 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
3332ex 412 . . 3 (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
3415, 33jaoi 857 . 2 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
351, 34mpcom 38 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928
This theorem is referenced by:  nn0ob  16330  nn0onn0ex  48485  nneom  48489  flnn0div2ge  48495  flnn0ohalf  48496
  Copyright terms: Public domain W3C validator