Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0o | Structured version Visualization version GIF version |
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
nn0o | ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0o1gt2 16198 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | |
2 | 1m1e0 12159 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
3 | 2 | oveq1i 7360 | . . . . . . 7 ⊢ ((1 − 1) / 2) = (0 / 2) |
4 | 2cn 12162 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
5 | 2ne0 12191 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
6 | 4, 5 | div0i 11823 | . . . . . . 7 ⊢ (0 / 2) = 0 |
7 | 3, 6 | eqtri 2766 | . . . . . 6 ⊢ ((1 − 1) / 2) = 0 |
8 | 0nn0 12362 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
9 | 7, 8 | eqeltri 2835 | . . . . 5 ⊢ ((1 − 1) / 2) ∈ ℕ0 |
10 | oveq1 7357 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
11 | 10 | oveq1d 7365 | . . . . . . 7 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2)) |
12 | 11 | eleq1d 2823 | . . . . . 6 ⊢ (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
13 | 12 | adantr 482 | . . . . 5 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
14 | 9, 13 | mpbiri 258 | . . . 4 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
15 | 14 | ex 414 | . . 3 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
16 | 2z 12466 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ) |
18 | nn0z 12457 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antrl 727 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ) |
20 | 2re 12161 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
21 | nn0re 12356 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
22 | ltle 11177 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁)) | |
23 | 20, 21, 22 | sylancr 588 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁)) |
24 | 23 | adantr 482 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁)) |
25 | 24 | impcom 409 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁) |
26 | eluz2 12702 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
27 | 17, 19, 25, 26 | syl3anbrc 1344 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ≥‘2)) |
28 | simprr 772 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0) | |
29 | 27, 28 | jca 513 | . . . . 5 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) |
30 | nno 16199 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | |
31 | nnnn0 12354 | . . . . 5 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0) | |
32 | 29, 30, 31 | 3syl 18 | . . . 4 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
33 | 32 | ex 414 | . . 3 ⊢ (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
34 | 15, 33 | jaoi 856 | . 2 ⊢ ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
35 | 1, 34 | mpcom 38 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 class class class wbr 5104 ‘cfv 6492 (class class class)co 7350 ℝcr 10984 0cc0 10985 1c1 10986 + caddc 10988 < clt 11123 ≤ cle 11124 − cmin 11319 / cdiv 11746 ℕcn 12087 2c2 12142 ℕ0cn0 12347 ℤcz 12433 ℤ≥cuz 12696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-cnex 11041 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-om 7794 df-2nd 7913 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-er 8582 df-en 8818 df-dom 8819 df-sdom 8820 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-2 12150 df-3 12151 df-4 12152 df-n0 12348 df-z 12434 df-uz 12697 df-rp 12845 |
This theorem is referenced by: nn0ob 16201 nn0onn0ex 46327 nneom 46331 flnn0div2ge 46337 flnn0ohalf 46338 |
Copyright terms: Public domain | W3C validator |