MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o Structured version   Visualization version   GIF version

Theorem nn0o 16020
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 16018 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
2 1m1e0 11975 . . . . . . . 8 (1 − 1) = 0
32oveq1i 7265 . . . . . . 7 ((1 − 1) / 2) = (0 / 2)
4 2cn 11978 . . . . . . . 8 2 ∈ ℂ
5 2ne0 12007 . . . . . . . 8 2 ≠ 0
64, 5div0i 11639 . . . . . . 7 (0 / 2) = 0
73, 6eqtri 2766 . . . . . 6 ((1 − 1) / 2) = 0
8 0nn0 12178 . . . . . 6 0 ∈ ℕ0
97, 8eqeltri 2835 . . . . 5 ((1 − 1) / 2) ∈ ℕ0
10 oveq1 7262 . . . . . . . 8 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
1110oveq1d 7270 . . . . . . 7 (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2))
1211eleq1d 2823 . . . . . 6 (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
1312adantr 480 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
149, 13mpbiri 257 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
1514ex 412 . . 3 (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
16 2z 12282 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ)
18 nn0z 12273 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1918ad2antrl 724 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ)
20 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
21 nn0re 12172 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
22 ltle 10994 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
2320, 21, 22sylancr 586 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁))
2423adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁))
2524impcom 407 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁)
26 eluz2 12517 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2717, 19, 25, 26syl3anbrc 1341 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ‘2))
28 simprr 769 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0)
2927, 28jca 511 . . . . 5 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0))
30 nno 16019 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
31 nnnn0 12170 . . . . 5 (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0)
3229, 30, 313syl 18 . . . 4 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
3332ex 412 . . 3 (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
3415, 33jaoi 853 . 2 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
351, 34mpcom 38 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660
This theorem is referenced by:  nn0ob  16021  nn0onn0ex  45757  nneom  45761  flnn0div2ge  45767  flnn0ohalf  45768
  Copyright terms: Public domain W3C validator