Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp4 | Structured version Visualization version GIF version |
Description: Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp4 | ⊢ (2↑4) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12137 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 2t2e4 12024 | . 2 ⊢ (2 · 2) = 4 | |
3 | sq2 13799 | . 2 ⊢ (2↑2) = 4 | |
4 | 4t4e16 12422 | . 2 ⊢ (4 · 4) = ;16 | |
5 | 1, 1, 2, 3, 4 | numexp2x 16665 | 1 ⊢ (2↑4) = ;16 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7235 1c1 10760 2c2 11915 4c4 11917 6c6 11919 ;cdc 12323 ↑cexp 13667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-9 11930 df-n0 12121 df-z 12207 df-dec 12324 df-uz 12469 df-seq 13607 df-exp 13668 |
This theorem is referenced by: 2exp8 16675 2expltfac 16679 1259lem3 16719 quart1lem 25770 hgt750lem 32375 aks4d1p1p5 39853 aks4d1p1 39854 wallispi2lem1 43333 wallispi2lem2 43334 fmtno2 44721 fmtno4 44723 ackval3012 45757 ackval42a 45762 |
Copyright terms: Public domain | W3C validator |