Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odid | Structured version Visualization version GIF version |
Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
odid.3 | ⊢ · = (.g‘𝐺) |
odid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
odid | ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7162 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) · 𝐴) = (0 · 𝐴)) | |
2 | odcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | odid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
5 | 2, 3, 4 | mulg0 18303 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
6 | 1, 5 | sylan9eqr 2815 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
7 | 6 | adantrr 716 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑂‘𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
8 | oveq1 7162 | . . . . . 6 ⊢ (𝑦 = (𝑂‘𝐴) → (𝑦 · 𝐴) = ((𝑂‘𝐴) · 𝐴)) | |
9 | 8 | eqeq1d 2760 | . . . . 5 ⊢ (𝑦 = (𝑂‘𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂‘𝐴) · 𝐴) = 0 )) |
10 | 9 | elrab 3604 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ ((𝑂‘𝐴) ∈ ℕ ∧ ((𝑂‘𝐴) · 𝐴) = 0 )) |
11 | 10 | simprbi 500 | . . 3 ⊢ ((𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ((𝑂‘𝐴) · 𝐴) = 0 ) |
12 | 11 | adantl 485 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
13 | odcl.2 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
14 | eqid 2758 | . . 3 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
15 | 2, 4, 3, 13, 14 | odlem1 18735 | . 2 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅) ∨ (𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })) |
16 | 7, 12, 15 | mpjaodan 956 | 1 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 ∅c0 4227 ‘cfv 6339 (class class class)co 7155 0cc0 10580 ℕcn 11679 Basecbs 16546 0gc0g 16776 .gcmg 18296 odcod 18724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-seq 13424 df-mulg 18297 df-od 18728 |
This theorem is referenced by: odmodnn0 18740 mndodconglem 18741 odmod 18746 odeq 18750 odeq1 18759 odf1 18761 chrid 20300 |
Copyright terms: Public domain | W3C validator |