![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odid | Structured version Visualization version GIF version |
Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
odid.3 | ⊢ · = (.g‘𝐺) |
odid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
odid | ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) · 𝐴) = (0 · 𝐴)) | |
2 | odcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | odid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
5 | 2, 3, 4 | mulg0 19114 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
6 | 1, 5 | sylan9eqr 2802 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
7 | 6 | adantrr 716 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑂‘𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
8 | oveq1 7455 | . . . . . 6 ⊢ (𝑦 = (𝑂‘𝐴) → (𝑦 · 𝐴) = ((𝑂‘𝐴) · 𝐴)) | |
9 | 8 | eqeq1d 2742 | . . . . 5 ⊢ (𝑦 = (𝑂‘𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂‘𝐴) · 𝐴) = 0 )) |
10 | 9 | elrab 3708 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ ((𝑂‘𝐴) ∈ ℕ ∧ ((𝑂‘𝐴) · 𝐴) = 0 )) |
11 | 10 | simprbi 496 | . . 3 ⊢ ((𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ((𝑂‘𝐴) · 𝐴) = 0 ) |
12 | 11 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
13 | odcl.2 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
14 | eqid 2740 | . . 3 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
15 | 2, 4, 3, 13, 14 | odlem1 19577 | . 2 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅) ∨ (𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })) |
16 | 7, 12, 15 | mpjaodan 959 | 1 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕcn 12293 Basecbs 17258 0gc0g 17499 .gcmg 19107 odcod 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-mulg 19108 df-od 19570 |
This theorem is referenced by: odmodnn0 19582 mndodconglem 19583 odmod 19588 odeq 19592 odm1inv 19595 odeq1 19602 odf1 19604 chrid 21563 isprimroot2 42051 grpods 42151 unitscyglem1 42152 unitscyglem4 42155 unitscyglem5 42156 |
Copyright terms: Public domain | W3C validator |