![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odid | Structured version Visualization version GIF version |
Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
odid.3 | ⊢ · = (.g‘𝐺) |
odid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
odid | ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7431 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) · 𝐴) = (0 · 𝐴)) | |
2 | odcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | odid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
5 | 2, 3, 4 | mulg0 19068 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
6 | 1, 5 | sylan9eqr 2788 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
7 | 6 | adantrr 715 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑂‘𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
8 | oveq1 7431 | . . . . . 6 ⊢ (𝑦 = (𝑂‘𝐴) → (𝑦 · 𝐴) = ((𝑂‘𝐴) · 𝐴)) | |
9 | 8 | eqeq1d 2728 | . . . . 5 ⊢ (𝑦 = (𝑂‘𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂‘𝐴) · 𝐴) = 0 )) |
10 | 9 | elrab 3681 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ ((𝑂‘𝐴) ∈ ℕ ∧ ((𝑂‘𝐴) · 𝐴) = 0 )) |
11 | 10 | simprbi 495 | . . 3 ⊢ ((𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ((𝑂‘𝐴) · 𝐴) = 0 ) |
12 | 11 | adantl 480 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
13 | odcl.2 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
14 | eqid 2726 | . . 3 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
15 | 2, 4, 3, 13, 14 | odlem1 19533 | . 2 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅) ∨ (𝑂‘𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })) |
16 | 7, 12, 15 | mpjaodan 956 | 1 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 ∅c0 4325 ‘cfv 6554 (class class class)co 7424 0cc0 11158 ℕcn 12264 Basecbs 17213 0gc0g 17454 .gcmg 19061 odcod 19522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-mulg 19062 df-od 19526 |
This theorem is referenced by: odmodnn0 19538 mndodconglem 19539 odmod 19544 odeq 19548 odm1inv 19551 odeq1 19558 odf1 19560 chrid 21519 |
Copyright terms: Public domain | W3C validator |