MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odid Structured version   Visualization version   GIF version

Theorem odid 19468
Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odid (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )

Proof of Theorem odid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . . 4 ((𝑂𝐴) = 0 → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
2 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
3 odid.4 . . . . 5 0 = (0g𝐺)
4 odid.3 . . . . 5 · = (.g𝐺)
52, 3, 4mulg0 19006 . . . 4 (𝐴𝑋 → (0 · 𝐴) = 0 )
61, 5sylan9eqr 2786 . . 3 ((𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) · 𝐴) = 0 )
76adantrr 717 . 2 ((𝐴𝑋 ∧ ((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)) → ((𝑂𝐴) · 𝐴) = 0 )
8 oveq1 7394 . . . . . 6 (𝑦 = (𝑂𝐴) → (𝑦 · 𝐴) = ((𝑂𝐴) · 𝐴))
98eqeq1d 2731 . . . . 5 (𝑦 = (𝑂𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂𝐴) · 𝐴) = 0 ))
109elrab 3659 . . . 4 ((𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ ((𝑂𝐴) ∈ ℕ ∧ ((𝑂𝐴) · 𝐴) = 0 ))
1110simprbi 496 . . 3 ((𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ((𝑂𝐴) · 𝐴) = 0 )
1211adantl 481 . 2 ((𝐴𝑋 ∧ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → ((𝑂𝐴) · 𝐴) = 0 )
13 odcl.2 . . 3 𝑂 = (od‘𝐺)
14 eqid 2729 . . 3 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
152, 4, 3, 13, 14odlem1 19465 . 2 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }))
167, 12, 15mpjaodan 960 1 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  c0 4296  cfv 6511  (class class class)co 7387  0cc0 11068  cn 12186  Basecbs 17179  0gc0g 17402  .gcmg 18999  odcod 19454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-mulg 19000  df-od 19458
This theorem is referenced by:  odmodnn0  19470  mndodconglem  19471  odmod  19476  odeq  19480  odm1inv  19483  odeq1  19490  odf1  19492  chrid  21435  isprimroot2  42082  grpods  42182  unitscyglem1  42183  unitscyglem4  42186  unitscyglem5  42187
  Copyright terms: Public domain W3C validator