MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprringb Structured version   Visualization version   GIF version

Theorem opprringb 19870
Description: Bidirectional form of opprring 19869. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringb (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)

Proof of Theorem opprringb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 19869 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2740 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprring 19869 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
5 eqidd 2741 . . . . 5 (⊤ → (Base‘𝑅) = (Base‘𝑅))
6 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
71, 6opprbas 19865 . . . . . . 7 (Base‘𝑅) = (Base‘𝑂)
83, 7opprbas 19865 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑂))
98a1i 11 . . . . 5 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑂)))
10 eqid 2740 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
111, 10oppradd 19867 . . . . . . . 8 (+g𝑅) = (+g𝑂)
123, 11oppradd 19867 . . . . . . 7 (+g𝑅) = (+g‘(oppr𝑂))
1312oveqi 7282 . . . . . 6 (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦)
1413a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
15 eqid 2740 . . . . . . . 8 (.r𝑂) = (.r𝑂)
16 eqid 2740 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
177, 15, 3, 16opprmul 19861 . . . . . . 7 (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥)
18 eqid 2740 . . . . . . . 8 (.r𝑅) = (.r𝑅)
196, 18, 1, 15opprmul 19861 . . . . . . 7 (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦)
2017, 19eqtr2i 2769 . . . . . 6 (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦)
2120a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
225, 9, 14, 21ringpropd 19817 . . . 4 (⊤ → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
2322mptru 1549 . . 3 (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring)
244, 23sylibr 233 . 2 (𝑂 ∈ Ring → 𝑅 ∈ Ring)
252, 24impbii 208 1 (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wtru 1543  wcel 2110  cfv 6431  (class class class)co 7269  Basecbs 16908  +gcplusg 16958  .rcmulr 16959  Ringcrg 19779  opprcoppr 19857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-tpos 8031  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-plusg 16971  df-mulr 16972  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-mgp 19717  df-ur 19734  df-ring 19781  df-oppr 19858
This theorem is referenced by:  opprdrng  20011  opprsubrg  20041  rhmopp  31512
  Copyright terms: Public domain W3C validator