Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprringb | Structured version Visualization version GIF version |
Description: Bidirectional form of opprring 19922. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprringb | ⊢ (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | 1 | opprring 19922 | . 2 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
3 | eqid 2736 | . . . 4 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
4 | 3 | opprring 19922 | . . 3 ⊢ (𝑂 ∈ Ring → (oppr‘𝑂) ∈ Ring) |
5 | eqidd 2737 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
6 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 1, 6 | opprbas 19918 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑂) |
8 | 3, 7 | opprbas 19918 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑂)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppr‘𝑂))) |
10 | eqid 2736 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
11 | 1, 10 | oppradd 19920 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑂) |
12 | 3, 11 | oppradd 19920 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑂)) |
13 | 12 | oveqi 7320 | . . . . . 6 ⊢ (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑂))𝑦) |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑂))𝑦)) |
15 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
16 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘(oppr‘𝑂)) = (.r‘(oppr‘𝑂)) | |
17 | 7, 15, 3, 16 | opprmul 19914 | . . . . . . 7 ⊢ (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥) |
18 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | 6, 18, 1, 15 | opprmul 19914 | . . . . . . 7 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
20 | 17, 19 | eqtr2i 2765 | . . . . . 6 ⊢ (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦) |
21 | 20 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) |
22 | 5, 9, 14, 21 | ringpropd 19870 | . . . 4 ⊢ (⊤ → (𝑅 ∈ Ring ↔ (oppr‘𝑂) ∈ Ring)) |
23 | 22 | mptru 1546 | . . 3 ⊢ (𝑅 ∈ Ring ↔ (oppr‘𝑂) ∈ Ring) |
24 | 4, 23 | sylibr 233 | . 2 ⊢ (𝑂 ∈ Ring → 𝑅 ∈ Ring) |
25 | 2, 24 | impbii 208 | 1 ⊢ (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 .rcmulr 17012 Ringcrg 19832 opprcoppr 19910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-plusg 17024 df-mulr 17025 df-0g 17201 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-grp 18629 df-mgp 19770 df-ur 19787 df-ring 19834 df-oppr 19911 |
This theorem is referenced by: opprdrng 20064 opprsubrg 20094 rhmopp 31567 |
Copyright terms: Public domain | W3C validator |