![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmsubcsetclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rhmsubcsetc 20688. (Contributed by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
rhmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
2 | 1 | eleq2d 2827 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
3 | elin 3982 | . . . . . 6 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈)) | |
4 | 3 | simplbi 497 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) |
5 | 2, 4 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
7 | eqid 2737 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
8 | 7 | idrhm 20516 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
10 | rhmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
11 | eqid 2737 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
12 | rhmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
14 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ 𝑈) |
15 | 2, 14 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
16 | 15 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
17 | 10, 11, 13, 16 | estrcid 18198 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
18 | rhmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
19 | 18 | oveqdr 7466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥)) |
20 | eqid 2737 | . . . . . . . 8 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
21 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈)) | |
22 | eqid 2737 | . . . . . . . 8 ⊢ (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈)) | |
23 | 20, 21, 12, 22 | ringchomfval 20677 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))) |
24 | 20, 21, 12 | ringcbas 20676 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
25 | incom 4220 | . . . . . . . . . . . 12 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
26 | 1, 25 | eqtrdi 2793 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
27 | 26 | eqcomd 2743 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Ring) = 𝐵) |
28 | 24, 27 | eqtrd 2777 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RingCat‘𝑈)) = 𝐵) |
29 | 28 | sqxpeqd 5725 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵)) |
30 | 29 | reseq2d 6004 | . . . . . . 7 ⊢ (𝜑 → ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵))) |
31 | 23, 30 | eqtrd 2777 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
33 | 32 | eqcomd 2743 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈))) |
34 | 33 | oveqd 7455 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥)) |
35 | 26 | eleq2d 2827 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
36 | 35 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Ring)) |
37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
38 | 36, 37 | eleqtrrd 2844 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈))) |
39 | 20, 21, 13, 22, 38, 38 | ringchom 20678 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥)) |
40 | 19, 34, 39 | 3eqtrd 2781 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
41 | 9, 17, 40 | 3eltr4d 2856 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 I cid 5586 × cxp 5691 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 Idccid 17719 ExtStrCatcestrc 18186 Ringcrg 20260 RingHom crh 20495 RingCatcringc 20671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-hom 17331 df-cco 17332 df-0g 17497 df-cat 17722 df-cid 17723 df-resc 17868 df-estrc 18187 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-grp 18976 df-ghm 19253 df-mgp 20162 df-ur 20209 df-ring 20262 df-rhm 20498 df-ringc 20672 |
This theorem is referenced by: rhmsubcsetc 20688 |
Copyright terms: Public domain | W3C validator |