MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubcsetclem1 Structured version   Visualization version   GIF version

Theorem rhmsubcsetclem1 20584
Description: Lemma 1 for rhmsubcsetc 20586. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcsetc.c 𝐶 = (ExtStrCat‘𝑈)
rhmsubcsetc.u (𝜑𝑈𝑉)
rhmsubcsetc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcsetc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmsubcsetclem1 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))

Proof of Theorem rhmsubcsetclem1
StepHypRef Expression
1 rhmsubcsetc.b . . . . . 6 (𝜑𝐵 = (Ring ∩ 𝑈))
21eleq2d 2819 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Ring ∩ 𝑈)))
3 elin 3914 . . . . . 6 (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥𝑈))
43simplbi 497 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
52, 4biimtrdi 253 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ Ring))
65imp 406 . . 3 ((𝜑𝑥𝐵) → 𝑥 ∈ Ring)
7 eqid 2733 . . . 4 (Base‘𝑥) = (Base‘𝑥)
87idrhm 20416 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
96, 8syl 17 . 2 ((𝜑𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
10 rhmsubcsetc.c . . 3 𝐶 = (ExtStrCat‘𝑈)
11 eqid 2733 . . 3 (Id‘𝐶) = (Id‘𝐶)
12 rhmsubcsetc.u . . . 4 (𝜑𝑈𝑉)
1312adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝑈𝑉)
143simprbi 496 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥𝑈)
152, 14biimtrdi 253 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑈))
1615imp 406 . . 3 ((𝜑𝑥𝐵) → 𝑥𝑈)
1710, 11, 13, 16estrcid 18048 . 2 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥)))
18 rhmsubcsetc.h . . . 4 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
1918oveqdr 7383 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥))
20 eqid 2733 . . . . . . . 8 (RingCat‘𝑈) = (RingCat‘𝑈)
21 eqid 2733 . . . . . . . 8 (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈))
22 eqid 2733 . . . . . . . 8 (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈))
2320, 21, 12, 22ringchomfval 20575 . . . . . . 7 (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))))
2420, 21, 12ringcbas 20574 . . . . . . . . . 10 (𝜑 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
25 incom 4158 . . . . . . . . . . . 12 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
261, 25eqtrdi 2784 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Ring))
2726eqcomd 2739 . . . . . . . . . 10 (𝜑 → (𝑈 ∩ Ring) = 𝐵)
2824, 27eqtrd 2768 . . . . . . . . 9 (𝜑 → (Base‘(RingCat‘𝑈)) = 𝐵)
2928sqxpeqd 5653 . . . . . . . 8 (𝜑 → ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵))
3029reseq2d 5935 . . . . . . 7 (𝜑 → ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵)))
3123, 30eqtrd 2768 . . . . . 6 (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵)))
3231adantr 480 . . . . 5 ((𝜑𝑥𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵)))
3332eqcomd 2739 . . . 4 ((𝜑𝑥𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈)))
3433oveqd 7372 . . 3 ((𝜑𝑥𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥))
3526eleq2d 2819 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Ring)))
3635biimpa 476 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 ∈ (𝑈 ∩ Ring))
3724adantr 480 . . . . 5 ((𝜑𝑥𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
3836, 37eleqtrrd 2836 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
3920, 21, 13, 22, 38, 38ringchom 20576 . . 3 ((𝜑𝑥𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥))
4019, 34, 393eqtrd 2772 . 2 ((𝜑𝑥𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
419, 17, 403eltr4d 2848 1 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897   I cid 5515   × cxp 5619  cres 5623  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  Idccid 17579  ExtStrCatcestrc 18036  Ringcrg 20159   RingHom crh 20396  RingCatcringc 20569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-hom 17192  df-cco 17193  df-0g 17352  df-cat 17582  df-cid 17583  df-resc 17726  df-estrc 18037  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-grp 18857  df-ghm 19133  df-mgp 20067  df-ur 20108  df-ring 20161  df-rhm 20399  df-ringc 20570
This theorem is referenced by:  rhmsubcsetc  20586
  Copyright terms: Public domain W3C validator