Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcsetclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rhmsubcsetc 45257. (Contributed by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
rhmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
2 | 1 | eleq2d 2823 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
3 | elin 3882 | . . . . . 6 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈)) | |
4 | 3 | simplbi 501 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) |
5 | 2, 4 | syl6bi 256 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
6 | 5 | imp 410 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
7 | eqid 2737 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
8 | 7 | idrhm 19751 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
10 | rhmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
11 | eqid 2737 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
12 | rhmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
13 | 12 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
14 | 3 | simprbi 500 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ 𝑈) |
15 | 2, 14 | syl6bi 256 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
16 | 15 | imp 410 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
17 | 10, 11, 13, 16 | estrcid 17641 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
18 | rhmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
19 | 18 | oveqdr 7241 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥)) |
20 | eqid 2737 | . . . . . . . 8 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
21 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈)) | |
22 | eqid 2737 | . . . . . . . 8 ⊢ (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈)) | |
23 | 20, 21, 12, 22 | ringchomfval 45246 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))) |
24 | 20, 21, 12 | ringcbas 45245 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
25 | incom 4115 | . . . . . . . . . . . 12 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
26 | 1, 25 | eqtrdi 2794 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
27 | 26 | eqcomd 2743 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Ring) = 𝐵) |
28 | 24, 27 | eqtrd 2777 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RingCat‘𝑈)) = 𝐵) |
29 | 28 | sqxpeqd 5583 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵)) |
30 | 29 | reseq2d 5851 | . . . . . . 7 ⊢ (𝜑 → ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵))) |
31 | 23, 30 | eqtrd 2777 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
32 | 31 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
33 | 32 | eqcomd 2743 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈))) |
34 | 33 | oveqd 7230 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥)) |
35 | 26 | eleq2d 2823 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
36 | 35 | biimpa 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Ring)) |
37 | 24 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
38 | 36, 37 | eleqtrrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈))) |
39 | 20, 21, 13, 22, 38, 38 | ringchom 45247 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥)) |
40 | 19, 34, 39 | 3eqtrd 2781 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
41 | 9, 17, 40 | 3eltr4d 2853 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 I cid 5454 × cxp 5549 ↾ cres 5553 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 Hom chom 16813 Idccid 17168 ExtStrCatcestrc 17629 Ringcrg 19562 RingHom crh 19732 RingCatcringc 45237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-hom 16826 df-cco 16827 df-0g 16946 df-cat 17171 df-cid 17172 df-resc 17316 df-estrc 17630 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-grp 18368 df-ghm 18620 df-mgp 19505 df-ur 19517 df-ring 19564 df-rnghom 19735 df-ringc 45239 |
This theorem is referenced by: rhmsubcsetc 45257 |
Copyright terms: Public domain | W3C validator |