| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmsubcsetclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rhmsubcsetc 20630. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rhmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rhmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rhmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| rhmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rhmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
| 3 | elin 3947 | . . . . . 6 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) |
| 5 | 2, 4 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
| 7 | eqid 2734 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 8 | 7 | idrhm 20458 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 10 | rhmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 11 | eqid 2734 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | rhmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 14 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 15 | 2, 14 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 17 | 10, 11, 13, 16 | estrcid 18149 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 18 | rhmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 19 | 18 | oveqdr 7441 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥)) |
| 20 | eqid 2734 | . . . . . . . 8 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
| 21 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈)) | |
| 22 | eqid 2734 | . . . . . . . 8 ⊢ (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈)) | |
| 23 | 20, 21, 12, 22 | ringchomfval 20619 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))) |
| 24 | 20, 21, 12 | ringcbas 20618 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
| 25 | incom 4189 | . . . . . . . . . . . 12 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 26 | 1, 25 | eqtrdi 2785 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 27 | 26 | eqcomd 2740 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Ring) = 𝐵) |
| 28 | 24, 27 | eqtrd 2769 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RingCat‘𝑈)) = 𝐵) |
| 29 | 28 | sqxpeqd 5697 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵)) |
| 30 | 29 | reseq2d 5977 | . . . . . . 7 ⊢ (𝜑 → ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 31 | 23, 30 | eqtrd 2769 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 33 | 32 | eqcomd 2740 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈))) |
| 34 | 33 | oveqd 7430 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥)) |
| 35 | 26 | eleq2d 2819 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
| 36 | 35 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Ring)) |
| 37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
| 38 | 36, 37 | eleqtrrd 2836 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈))) |
| 39 | 20, 21, 13, 22, 38, 38 | ringchom 20620 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥)) |
| 40 | 19, 34, 39 | 3eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
| 41 | 9, 17, 40 | 3eltr4d 2848 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 I cid 5557 × cxp 5663 ↾ cres 5667 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Hom chom 17284 Idccid 17679 ExtStrCatcestrc 18137 Ringcrg 20198 RingHom crh 20437 RingCatcringc 20613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-hom 17297 df-cco 17298 df-0g 17457 df-cat 17682 df-cid 17683 df-resc 17826 df-estrc 18138 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-ghm 19200 df-mgp 20106 df-ur 20147 df-ring 20200 df-rhm 20440 df-ringc 20614 |
| This theorem is referenced by: rhmsubcsetc 20630 |
| Copyright terms: Public domain | W3C validator |