Proof of Theorem rhmsubcrngclem1
Step | Hyp | Ref
| Expression |
1 | | rhmsubcrngc.b |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
2 | 1 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
3 | | elin 3903 |
. . . . . 6
⊢ (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈)) |
4 | 3 | simplbi 498 |
. . . . 5
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) |
5 | 2, 4 | syl6bi 252 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
6 | 5 | imp 407 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
7 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑥) =
(Base‘𝑥) |
8 | 7 | idrhm 19975 |
. . 3
⊢ (𝑥 ∈ Ring → ( I ↾
(Base‘𝑥)) ∈
(𝑥 RingHom 𝑥)) |
9 | 6, 8 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
10 | | rhmsubcrngc.c |
. . 3
⊢ 𝐶 = (RngCat‘𝑈) |
11 | | eqid 2738 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
12 | | eqid 2738 |
. . 3
⊢
(Id‘𝐶) =
(Id‘𝐶) |
13 | | rhmsubcrngc.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
14 | 13 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
15 | | ringrng 45437 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) |
16 | 15 | anim2i 617 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
17 | 16 | ancoms 459 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
18 | 3, 17 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
19 | 18 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
20 | | elin 3903 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
21 | 19, 20 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → 𝑥 ∈ (𝑈 ∩ Rng)) |
22 | 10, 11, 13 | rngcbas 45523 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
23 | 22 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → (Base‘𝐶) = (𝑈 ∩ Rng)) |
24 | 21, 23 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → 𝑥 ∈ (Base‘𝐶)) |
25 | 24 | ex 413 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ (Base‘𝐶))) |
26 | 2, 25 | sylbid 239 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (Base‘𝐶))) |
27 | 26 | imp 407 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐶)) |
28 | 10, 11, 12, 14, 27, 7 | rngcid 45537 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
29 | | rhmsubcrngc.h |
. . . 4
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
30 | 29 | oveqdr 7303 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥)) |
31 | | eqid 2738 |
. . . . . . . 8
⊢
(RingCat‘𝑈) =
(RingCat‘𝑈) |
32 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈)) |
33 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘(RingCat‘𝑈)) =
(Hom ‘(RingCat‘𝑈)) |
34 | 31, 32, 13, 33 | ringchomfval 45570 |
. . . . . . 7
⊢ (𝜑 → (Hom
‘(RingCat‘𝑈)) =
( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))) |
35 | 31, 32, 13 | ringcbas 45569 |
. . . . . . . . . 10
⊢ (𝜑 →
(Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
36 | | incom 4135 |
. . . . . . . . . . . 12
⊢ (Ring
∩ 𝑈) = (𝑈 ∩ Ring) |
37 | 1, 36 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
38 | 37 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 ∩ Ring) = 𝐵) |
39 | 35, 38 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 →
(Base‘(RingCat‘𝑈)) = 𝐵) |
40 | 39 | sqxpeqd 5621 |
. . . . . . . 8
⊢ (𝜑 →
((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵)) |
41 | 40 | reseq2d 5891 |
. . . . . . 7
⊢ (𝜑 → ( RingHom ↾
((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵))) |
42 | 34, 41 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (Hom
‘(RingCat‘𝑈)) =
( RingHom ↾ (𝐵
× 𝐵))) |
43 | 42 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
44 | 43 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈))) |
45 | 44 | oveqd 7292 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥)) |
46 | 37 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
47 | 46 | biimpa 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Ring)) |
48 | 35 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
49 | 47, 48 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈))) |
50 | 31, 32, 14, 33, 49, 49 | ringchom 45571 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥)) |
51 | 30, 45, 50 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
52 | 9, 28, 51 | 3eltr4d 2854 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |