Proof of Theorem rhmsubcrngclem1
| Step | Hyp | Ref
| Expression |
| 1 | | rhmsubcrngc.b |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| 2 | 1 | eleq2d 2827 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
| 3 | | elin 3967 |
. . . . . 6
⊢ (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈)) |
| 4 | 3 | simplbi 497 |
. . . . 5
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) |
| 5 | 2, 4 | biimtrdi 253 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
| 6 | 5 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
| 7 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑥) =
(Base‘𝑥) |
| 8 | 7 | idrhm 20490 |
. . 3
⊢ (𝑥 ∈ Ring → ( I ↾
(Base‘𝑥)) ∈
(𝑥 RingHom 𝑥)) |
| 9 | 6, 8 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 10 | | rhmsubcrngc.c |
. . 3
⊢ 𝐶 = (RngCat‘𝑈) |
| 11 | | eqid 2737 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 12 | | eqid 2737 |
. . 3
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 13 | | rhmsubcrngc.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 14 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 15 | | ringrng 20282 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) |
| 16 | 15 | anim2i 617 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 17 | 16 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 18 | 3, 17 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 19 | 18 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 20 | | elin 3967 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 21 | 19, 20 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 22 | 10, 11, 13 | rngcbas 20621 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 24 | 21, 23 | eleqtrrd 2844 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Ring ∩ 𝑈)) → 𝑥 ∈ (Base‘𝐶)) |
| 25 | 24 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ (Base‘𝐶))) |
| 26 | 2, 25 | sylbid 240 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (Base‘𝐶))) |
| 27 | 26 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐶)) |
| 28 | 10, 11, 12, 14, 27, 7 | rngcid 20635 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 29 | | rhmsubcrngc.h |
. . . 4
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| 30 | 29 | oveqdr 7459 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥)) |
| 31 | | eqid 2737 |
. . . . . . . 8
⊢
(RingCat‘𝑈) =
(RingCat‘𝑈) |
| 32 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈)) |
| 33 | | eqid 2737 |
. . . . . . . 8
⊢ (Hom
‘(RingCat‘𝑈)) =
(Hom ‘(RingCat‘𝑈)) |
| 34 | 31, 32, 13, 33 | ringchomfval 20651 |
. . . . . . 7
⊢ (𝜑 → (Hom
‘(RingCat‘𝑈)) =
( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))) |
| 35 | 31, 32, 13 | ringcbas 20650 |
. . . . . . . . . 10
⊢ (𝜑 →
(Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
| 36 | | incom 4209 |
. . . . . . . . . . . 12
⊢ (Ring
∩ 𝑈) = (𝑈 ∩ Ring) |
| 37 | 1, 36 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 38 | 37 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 ∩ Ring) = 𝐵) |
| 39 | 35, 38 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝜑 →
(Base‘(RingCat‘𝑈)) = 𝐵) |
| 40 | 39 | sqxpeqd 5717 |
. . . . . . . 8
⊢ (𝜑 →
((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵)) |
| 41 | 40 | reseq2d 5997 |
. . . . . . 7
⊢ (𝜑 → ( RingHom ↾
((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 42 | 34, 41 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → (Hom
‘(RingCat‘𝑈)) =
( RingHom ↾ (𝐵
× 𝐵))) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 44 | 43 | eqcomd 2743 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈))) |
| 45 | 44 | oveqd 7448 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥)) |
| 46 | 37 | eleq2d 2827 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
| 47 | 46 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Ring)) |
| 48 | 35 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring)) |
| 49 | 47, 48 | eleqtrrd 2844 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈))) |
| 50 | 31, 32, 14, 33, 49, 49 | ringchom 20652 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥)) |
| 51 | 30, 45, 50 | 3eqtrd 2781 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
| 52 | 9, 28, 51 | 3eltr4d 2856 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |