MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubcrngclem1 Structured version   Visualization version   GIF version

Theorem rhmsubcrngclem1 20666
Description: Lemma 1 for rhmsubcrngc 20668. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐶 = (RngCat‘𝑈)
rhmsubcrngc.u (𝜑𝑈𝑉)
rhmsubcrngc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcrngc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmsubcrngclem1 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))

Proof of Theorem rhmsubcrngclem1
StepHypRef Expression
1 rhmsubcrngc.b . . . . . 6 (𝜑𝐵 = (Ring ∩ 𝑈))
21eleq2d 2827 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Ring ∩ 𝑈)))
3 elin 3967 . . . . . 6 (𝑥 ∈ (Ring ∩ 𝑈) ↔ (𝑥 ∈ Ring ∧ 𝑥𝑈))
43simplbi 497 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
52, 4biimtrdi 253 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ Ring))
65imp 406 . . 3 ((𝜑𝑥𝐵) → 𝑥 ∈ Ring)
7 eqid 2737 . . . 4 (Base‘𝑥) = (Base‘𝑥)
87idrhm 20490 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
96, 8syl 17 . 2 ((𝜑𝑥𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
10 rhmsubcrngc.c . . 3 𝐶 = (RngCat‘𝑈)
11 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
12 eqid 2737 . . 3 (Id‘𝐶) = (Id‘𝐶)
13 rhmsubcrngc.u . . . 4 (𝜑𝑈𝑉)
1413adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝑈𝑉)
15 ringrng 20282 . . . . . . . . . . . 12 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
1615anim2i 617 . . . . . . . . . . 11 ((𝑥𝑈𝑥 ∈ Ring) → (𝑥𝑈𝑥 ∈ Rng))
1716ancoms 458 . . . . . . . . . 10 ((𝑥 ∈ Ring ∧ 𝑥𝑈) → (𝑥𝑈𝑥 ∈ Rng))
183, 17sylbi 217 . . . . . . . . 9 (𝑥 ∈ (Ring ∩ 𝑈) → (𝑥𝑈𝑥 ∈ Rng))
1918adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Ring ∩ 𝑈)) → (𝑥𝑈𝑥 ∈ Rng))
20 elin 3967 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
2119, 20sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ (Ring ∩ 𝑈)) → 𝑥 ∈ (𝑈 ∩ Rng))
2210, 11, 13rngcbas 20621 . . . . . . . 8 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Ring ∩ 𝑈)) → (Base‘𝐶) = (𝑈 ∩ Rng))
2421, 23eleqtrrd 2844 . . . . . 6 ((𝜑𝑥 ∈ (Ring ∩ 𝑈)) → 𝑥 ∈ (Base‘𝐶))
2524ex 412 . . . . 5 (𝜑 → (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ (Base‘𝐶)))
262, 25sylbid 240 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐶)))
2726imp 406 . . 3 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘𝐶))
2810, 11, 12, 14, 27, 7rngcid 20635 . 2 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥)))
29 rhmsubcrngc.h . . . 4 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
3029oveqdr 7459 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐻𝑥) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥))
31 eqid 2737 . . . . . . . 8 (RingCat‘𝑈) = (RingCat‘𝑈)
32 eqid 2737 . . . . . . . 8 (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈))
33 eqid 2737 . . . . . . . 8 (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈))
3431, 32, 13, 33ringchomfval 20651 . . . . . . 7 (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))))
3531, 32, 13ringcbas 20650 . . . . . . . . . 10 (𝜑 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
36 incom 4209 . . . . . . . . . . . 12 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
371, 36eqtrdi 2793 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Ring))
3837eqcomd 2743 . . . . . . . . . 10 (𝜑 → (𝑈 ∩ Ring) = 𝐵)
3935, 38eqtrd 2777 . . . . . . . . 9 (𝜑 → (Base‘(RingCat‘𝑈)) = 𝐵)
4039sqxpeqd 5717 . . . . . . . 8 (𝜑 → ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))) = (𝐵 × 𝐵))
4140reseq2d 5997 . . . . . . 7 (𝜑 → ( RingHom ↾ ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))) = ( RingHom ↾ (𝐵 × 𝐵)))
4234, 41eqtrd 2777 . . . . . 6 (𝜑 → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵)))
4342adantr 480 . . . . 5 ((𝜑𝑥𝐵) → (Hom ‘(RingCat‘𝑈)) = ( RingHom ↾ (𝐵 × 𝐵)))
4443eqcomd 2743 . . . 4 ((𝜑𝑥𝐵) → ( RingHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RingCat‘𝑈)))
4544oveqd 7448 . . 3 ((𝜑𝑥𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RingCat‘𝑈))𝑥))
4637eleq2d 2827 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Ring)))
4746biimpa 476 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 ∈ (𝑈 ∩ Ring))
4835adantr 480 . . . . 5 ((𝜑𝑥𝐵) → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
4947, 48eleqtrrd 2844 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
5031, 32, 14, 33, 49, 49ringchom 20652 . . 3 ((𝜑𝑥𝐵) → (𝑥(Hom ‘(RingCat‘𝑈))𝑥) = (𝑥 RingHom 𝑥))
5130, 45, 503eqtrd 2781 . 2 ((𝜑𝑥𝐵) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
529, 28, 513eltr4d 2856 1 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950   I cid 5577   × cxp 5683  cres 5687  cfv 6561  (class class class)co 7431  Basecbs 17247  Hom chom 17308  Idccid 17708  Rngcrng 20149  Ringcrg 20230   RingHom crh 20469  RngCatcrngc 20616  RingCatcringc 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-hom 17321  df-cco 17322  df-0g 17486  df-cat 17711  df-cid 17712  df-homf 17713  df-ssc 17854  df-resc 17855  df-subc 17856  df-estrc 18167  df-mgm 18653  df-mgmhm 18705  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-rnghm 20436  df-rhm 20472  df-rngc 20617  df-ringc 20646
This theorem is referenced by:  rhmsubcrngc  20668
  Copyright terms: Public domain W3C validator