![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1mpl1 | Structured version Visualization version GIF version |
Description: The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
ply1mpl1.m | ⊢ 𝑀 = (1o mPoly 𝑅) |
ply1mpl1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1mpl1.o | ⊢ 1 = (1r‘𝑃) |
Ref | Expression |
---|---|
ply1mpl1 | ⊢ 1 = (1r‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mpl1.o | . 2 ⊢ 1 = (1r‘𝑃) | |
2 | eqidd 2727 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑃)) | |
3 | ply1mpl1.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2726 | . . . . . . 7 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
5 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
6 | 3, 4, 5 | ply1bas 22069 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
7 | ply1mpl1.m | . . . . . . 7 ⊢ 𝑀 = (1o mPoly 𝑅) | |
8 | 7 | fveq2i 6888 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘(1o mPoly 𝑅)) |
9 | 6, 8 | eqtr4i 2757 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑀) |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑀)) |
11 | eqid 2726 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
12 | 3, 7, 11 | ply1mulr 22099 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑀) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (⊤ → (.r‘𝑃) = (.r‘𝑀)) |
14 | 13 | oveqdr 7433 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
15 | 2, 10, 14 | rngidpropd 20317 | . . 3 ⊢ (⊤ → (1r‘𝑃) = (1r‘𝑀)) |
16 | 15 | mptru 1540 | . 2 ⊢ (1r‘𝑃) = (1r‘𝑀) |
17 | 1, 16 | eqtri 2754 | 1 ⊢ 1 = (1r‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ‘cfv 6537 (class class class)co 7405 1oc1o 8460 Basecbs 17153 .rcmulr 17207 1rcur 20086 mPoly cmpl 21800 PwSer1cps1 22049 Poly1cpl1 22051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-dec 12682 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-ple 17226 df-0g 17396 df-mgp 20040 df-ur 20087 df-psr 21803 df-mpl 21805 df-opsr 21807 df-psr1 22054 df-ply1 22056 |
This theorem is referenced by: ply1ascl 22132 ply1nzb 26013 |
Copyright terms: Public domain | W3C validator |