![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1mpl1 | Structured version Visualization version GIF version |
Description: The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
ply1mpl1.m | ⊢ 𝑀 = (1o mPoly 𝑅) |
ply1mpl1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1mpl1.o | ⊢ 1 = (1r‘𝑃) |
Ref | Expression |
---|---|
ply1mpl1 | ⊢ 1 = (1r‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mpl1.o | . 2 ⊢ 1 = (1r‘𝑃) | |
2 | eqidd 2735 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑃)) | |
3 | ply1mpl1.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
5 | 3, 4 | ply1bas 22211 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
6 | ply1mpl1.m | . . . . . . 7 ⊢ 𝑀 = (1o mPoly 𝑅) | |
7 | 6 | fveq2i 6909 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘(1o mPoly 𝑅)) |
8 | 5, 7 | eqtr4i 2765 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑀) |
9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑀)) |
10 | eqid 2734 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
11 | 3, 6, 10 | ply1mulr 22242 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑀) |
12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → (.r‘𝑃) = (.r‘𝑀)) |
13 | 12 | oveqdr 7458 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
14 | 2, 9, 13 | rngidpropd 20431 | . . 3 ⊢ (⊤ → (1r‘𝑃) = (1r‘𝑀)) |
15 | 14 | mptru 1543 | . 2 ⊢ (1r‘𝑃) = (1r‘𝑀) |
16 | 1, 15 | eqtri 2762 | 1 ⊢ 1 = (1r‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ⊤wtru 1537 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 1oc1o 8497 Basecbs 17244 .rcmulr 17298 1rcur 20198 mPoly cmpl 21943 Poly1cpl1 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-dec 12731 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-ple 17317 df-0g 17487 df-mgp 20152 df-ur 20199 df-psr 21946 df-mpl 21948 df-opsr 21950 df-psr1 22196 df-ply1 22198 |
This theorem is referenced by: ply1ascl 22276 ply1nzb 26176 |
Copyright terms: Public domain | W3C validator |