| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1mpl1 | Structured version Visualization version GIF version | ||
| Description: The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| ply1mpl1.m | ⊢ 𝑀 = (1o mPoly 𝑅) |
| ply1mpl1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1mpl1.o | ⊢ 1 = (1r‘𝑃) |
| Ref | Expression |
|---|---|
| ply1mpl1 | ⊢ 1 = (1r‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1mpl1.o | . 2 ⊢ 1 = (1r‘𝑃) | |
| 2 | eqidd 2736 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑃)) | |
| 3 | ply1mpl1.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | 3, 4 | ply1bas 22128 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
| 6 | ply1mpl1.m | . . . . . . 7 ⊢ 𝑀 = (1o mPoly 𝑅) | |
| 7 | 6 | fveq2i 6878 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘(1o mPoly 𝑅)) |
| 8 | 5, 7 | eqtr4i 2761 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑀) |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑀)) |
| 10 | eqid 2735 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 11 | 3, 6, 10 | ply1mulr 22159 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑀) |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → (.r‘𝑃) = (.r‘𝑀)) |
| 13 | 12 | oveqdr 7431 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
| 14 | 2, 9, 13 | rngidpropd 20373 | . . 3 ⊢ (⊤ → (1r‘𝑃) = (1r‘𝑀)) |
| 15 | 14 | mptru 1547 | . 2 ⊢ (1r‘𝑃) = (1r‘𝑀) |
| 16 | 1, 15 | eqtri 2758 | 1 ⊢ 1 = (1r‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 1oc1o 8471 Basecbs 17226 .rcmulr 17270 1rcur 20139 mPoly cmpl 21864 Poly1cpl1 22110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-dec 12707 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-ple 17289 df-0g 17453 df-mgp 20099 df-ur 20140 df-psr 21867 df-mpl 21869 df-opsr 21871 df-psr1 22113 df-ply1 22115 |
| This theorem is referenced by: ply1ascl 22193 ply1nzb 26078 |
| Copyright terms: Public domain | W3C validator |