Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tngdim Structured version   Visualization version   GIF version

Theorem tngdim 31704
Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
tnglvec.t 𝑇 = (𝐺 toNrmGrp 𝑁)
Assertion
Ref Expression
tngdim ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))

Proof of Theorem tngdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝐺))
2 tnglvec.t . . . 4 𝑇 = (𝐺 toNrmGrp 𝑁)
3 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
42, 3tngbas 23808 . . 3 (𝑁𝑉 → (Base‘𝐺) = (Base‘𝑇))
54adantl 482 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝑇))
6 ssidd 3943 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) ⊆ (Base‘𝐺))
7 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
82, 7tngplusg 23810 . . . 4 (𝑁𝑉 → (+g𝐺) = (+g𝑇))
98adantl 482 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g𝐺) = (+g𝑇))
109oveqdr 7295 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
11 lveclmod 20378 . . . 4 (𝐺 ∈ LVec → 𝐺 ∈ LMod)
12 eqid 2738 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
13 eqid 2738 . . . . . 6 ( ·𝑠𝐺) = ( ·𝑠𝐺)
14 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
153, 12, 13, 14lmodvscl 20150 . . . . 5 ((𝐺 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
16153expb 1119 . . . 4 ((𝐺 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1711, 16sylan 580 . . 3 ((𝐺 ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1817adantlr 712 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
192, 13tngvsca 23817 . . . 4 (𝑁𝑉 → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2019adantl 482 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2120oveqdr 7295 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) = (𝑥( ·𝑠𝑇)𝑦))
22 eqid 2738 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
23 eqidd 2739 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)))
242, 12tngsca 23815 . . . 4 (𝑁𝑉 → (Scalar‘𝐺) = (Scalar‘𝑇))
2524adantl 482 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Scalar‘𝐺) = (Scalar‘𝑇))
2625fveq2d 6770 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑇)))
2725fveq2d 6770 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g‘(Scalar‘𝐺)) = (+g‘(Scalar‘𝑇)))
2827oveqdr 7295 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐺)))) → (𝑥(+g‘(Scalar‘𝐺))𝑦) = (𝑥(+g‘(Scalar‘𝑇))𝑦))
29 simpl 483 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝐺 ∈ LVec)
302tnglvec 31703 . . 3 (𝑁𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec))
3130biimpac 479 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝑇 ∈ LVec)
321, 5, 6, 10, 18, 21, 12, 22, 23, 26, 28, 29, 31dimpropd 31700 1 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6426  (class class class)co 7267  Basecbs 16922  +gcplusg 16972  Scalarcsca 16975   ·𝑠 cvsca 16976  LModclmod 20133  LVecclvec 20374   toNrmGrp ctng 23744  dimcldim 31692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-reg 9338  ax-inf2 9386  ax-ac2 10229  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-rpss 7566  df-om 7703  df-1st 7820  df-2nd 7821  df-tpos 8029  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-oadd 8288  df-er 8485  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-oi 9256  df-r1 9532  df-rank 9533  df-dju 9669  df-card 9707  df-acn 9710  df-ac 9882  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-xnn0 12316  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-hash 14055  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ocomp 16993  df-ds 16994  df-0g 17162  df-mre 17305  df-mrc 17306  df-mri 17307  df-acs 17308  df-proset 18023  df-drs 18024  df-poset 18041  df-ipo 18256  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-submnd 18441  df-grp 18590  df-minusg 18591  df-sbg 18592  df-subg 18762  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-oppr 19872  df-dvdsr 19893  df-unit 19894  df-invr 19924  df-drng 20003  df-lmod 20135  df-lss 20204  df-lsp 20244  df-lbs 20347  df-lvec 20375  df-tng 23750  df-dim 31693
This theorem is referenced by:  rrxdim  31705
  Copyright terms: Public domain W3C validator