Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tngdim Structured version   Visualization version   GIF version

Theorem tngdim 31099
Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
tnglvec.t 𝑇 = (𝐺 toNrmGrp 𝑁)
Assertion
Ref Expression
tngdim ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))

Proof of Theorem tngdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝐺))
2 tnglvec.t . . . 4 𝑇 = (𝐺 toNrmGrp 𝑁)
3 eqid 2798 . . . 4 (Base‘𝐺) = (Base‘𝐺)
42, 3tngbas 23247 . . 3 (𝑁𝑉 → (Base‘𝐺) = (Base‘𝑇))
54adantl 485 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝑇))
6 ssidd 3938 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) ⊆ (Base‘𝐺))
7 eqid 2798 . . . . 5 (+g𝐺) = (+g𝐺)
82, 7tngplusg 23248 . . . 4 (𝑁𝑉 → (+g𝐺) = (+g𝑇))
98adantl 485 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g𝐺) = (+g𝑇))
109oveqdr 7163 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
11 lveclmod 19871 . . . 4 (𝐺 ∈ LVec → 𝐺 ∈ LMod)
12 eqid 2798 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
13 eqid 2798 . . . . . 6 ( ·𝑠𝐺) = ( ·𝑠𝐺)
14 eqid 2798 . . . . . 6 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
153, 12, 13, 14lmodvscl 19644 . . . . 5 ((𝐺 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
16153expb 1117 . . . 4 ((𝐺 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1711, 16sylan 583 . . 3 ((𝐺 ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1817adantlr 714 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
192, 13tngvsca 23252 . . . 4 (𝑁𝑉 → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2019adantl 485 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2120oveqdr 7163 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) = (𝑥( ·𝑠𝑇)𝑦))
22 eqid 2798 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
23 eqidd 2799 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)))
242, 12tngsca 23251 . . . 4 (𝑁𝑉 → (Scalar‘𝐺) = (Scalar‘𝑇))
2524adantl 485 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Scalar‘𝐺) = (Scalar‘𝑇))
2625fveq2d 6649 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑇)))
2725fveq2d 6649 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g‘(Scalar‘𝐺)) = (+g‘(Scalar‘𝑇)))
2827oveqdr 7163 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐺)))) → (𝑥(+g‘(Scalar‘𝐺))𝑦) = (𝑥(+g‘(Scalar‘𝑇))𝑦))
29 simpl 486 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝐺 ∈ LVec)
302tnglvec 31098 . . 3 (𝑁𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec))
3130biimpac 482 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝑇 ∈ LVec)
321, 5, 6, 10, 18, 21, 12, 22, 23, 26, 28, 29, 31dimpropd 31095 1 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  LModclmod 19627  LVecclvec 19867   toNrmGrp ctng 23185  dimcldim 31087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ocomp 16578  df-ds 16579  df-0g 16707  df-mre 16849  df-mrc 16850  df-mri 16851  df-acs 16852  df-proset 17530  df-drs 17531  df-poset 17548  df-ipo 17754  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lbs 19840  df-lvec 19868  df-tng 23191  df-dim 31088
This theorem is referenced by:  rrxdim  31100
  Copyright terms: Public domain W3C validator