Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tngdim Structured version   Visualization version   GIF version

Theorem tngdim 30672
Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
tnglvec.t 𝑇 = (𝐺 toNrmGrp 𝑁)
Assertion
Ref Expression
tngdim ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))

Proof of Theorem tngdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2772 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝐺))
2 tnglvec.t . . . 4 𝑇 = (𝐺 toNrmGrp 𝑁)
3 eqid 2771 . . . 4 (Base‘𝐺) = (Base‘𝐺)
42, 3tngbas 22968 . . 3 (𝑁𝑉 → (Base‘𝐺) = (Base‘𝑇))
54adantl 474 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝑇))
6 ssidd 3873 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) ⊆ (Base‘𝐺))
7 eqid 2771 . . . . 5 (+g𝐺) = (+g𝐺)
82, 7tngplusg 22969 . . . 4 (𝑁𝑉 → (+g𝐺) = (+g𝑇))
98adantl 474 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g𝐺) = (+g𝑇))
109oveqdr 7002 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
11 lveclmod 19612 . . . 4 (𝐺 ∈ LVec → 𝐺 ∈ LMod)
12 eqid 2771 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
13 eqid 2771 . . . . . 6 ( ·𝑠𝐺) = ( ·𝑠𝐺)
14 eqid 2771 . . . . . 6 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
153, 12, 13, 14lmodvscl 19385 . . . . 5 ((𝐺 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
16153expb 1101 . . . 4 ((𝐺 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1711, 16sylan 572 . . 3 ((𝐺 ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1817adantlr 703 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
192, 13tngvsca 22973 . . . 4 (𝑁𝑉 → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2019adantl 474 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2120oveqdr 7002 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) = (𝑥( ·𝑠𝑇)𝑦))
22 eqid 2771 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
23 eqidd 2772 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)))
242, 12tngsca 22972 . . . 4 (𝑁𝑉 → (Scalar‘𝐺) = (Scalar‘𝑇))
2524adantl 474 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Scalar‘𝐺) = (Scalar‘𝑇))
2625fveq2d 6500 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑇)))
2725fveq2d 6500 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g‘(Scalar‘𝐺)) = (+g‘(Scalar‘𝑇)))
2827oveqdr 7002 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐺)))) → (𝑥(+g‘(Scalar‘𝐺))𝑦) = (𝑥(+g‘(Scalar‘𝑇))𝑦))
29 simpl 475 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝐺 ∈ LVec)
302tnglvec 30671 . . 3 (𝑁𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec))
3130biimpac 471 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝑇 ∈ LVec)
321, 5, 6, 10, 18, 21, 12, 22, 23, 26, 28, 29, 31dimpropd 30668 1 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  cfv 6185  (class class class)co 6974  Basecbs 16337  +gcplusg 16419  Scalarcsca 16422   ·𝑠 cvsca 16423  LModclmod 19368  LVecclvec 19608   toNrmGrp ctng 22906  dimcldim 30660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-reg 8849  ax-inf2 8896  ax-ac2 9681  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-rpss 7265  df-om 7395  df-1st 7499  df-2nd 7500  df-tpos 7693  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-oi 8767  df-r1 8985  df-rank 8986  df-dju 9122  df-card 9160  df-acn 9163  df-ac 9334  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-xnn0 11778  df-z 11792  df-dec 11910  df-uz 12057  df-fz 12707  df-hash 13504  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-sca 16435  df-vsca 16436  df-tset 16438  df-ple 16439  df-ocomp 16440  df-ds 16441  df-0g 16569  df-mre 16727  df-mrc 16728  df-mri 16729  df-acs 16730  df-proset 17408  df-drs 17409  df-poset 17426  df-ipo 17632  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-oppr 19108  df-dvdsr 19126  df-unit 19127  df-invr 19157  df-drng 19239  df-lmod 19370  df-lss 19438  df-lsp 19478  df-lbs 19581  df-lvec 19609  df-tng 22912  df-dim 30661
This theorem is referenced by:  rrxdim  30673
  Copyright terms: Public domain W3C validator