![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tngdim | Structured version Visualization version GIF version |
Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
tnglvec.t | β’ π = (πΊ toNrmGrp π) |
Ref | Expression |
---|---|
tngdim | β’ ((πΊ β LVec β§ π β π) β (dimβπΊ) = (dimβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2729 | . 2 β’ ((πΊ β LVec β§ π β π) β (BaseβπΊ) = (BaseβπΊ)) | |
2 | tnglvec.t | . . . 4 β’ π = (πΊ toNrmGrp π) | |
3 | eqid 2728 | . . . 4 β’ (BaseβπΊ) = (BaseβπΊ) | |
4 | 2, 3 | tngbas 24564 | . . 3 β’ (π β π β (BaseβπΊ) = (Baseβπ)) |
5 | 4 | adantl 481 | . 2 β’ ((πΊ β LVec β§ π β π) β (BaseβπΊ) = (Baseβπ)) |
6 | ssidd 4003 | . 2 β’ ((πΊ β LVec β§ π β π) β (BaseβπΊ) β (BaseβπΊ)) | |
7 | eqid 2728 | . . . . 5 β’ (+gβπΊ) = (+gβπΊ) | |
8 | 2, 7 | tngplusg 24566 | . . . 4 β’ (π β π β (+gβπΊ) = (+gβπ)) |
9 | 8 | adantl 481 | . . 3 β’ ((πΊ β LVec β§ π β π) β (+gβπΊ) = (+gβπ)) |
10 | 9 | oveqdr 7448 | . 2 β’ (((πΊ β LVec β§ π β π) β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ))) β (π₯(+gβπΊ)π¦) = (π₯(+gβπ)π¦)) |
11 | lveclmod 20991 | . . . 4 β’ (πΊ β LVec β πΊ β LMod) | |
12 | eqid 2728 | . . . . . 6 β’ (ScalarβπΊ) = (ScalarβπΊ) | |
13 | eqid 2728 | . . . . . 6 β’ ( Β·π βπΊ) = ( Β·π βπΊ) | |
14 | eqid 2728 | . . . . . 6 β’ (Baseβ(ScalarβπΊ)) = (Baseβ(ScalarβπΊ)) | |
15 | 3, 12, 13, 14 | lmodvscl 20761 | . . . . 5 β’ ((πΊ β LMod β§ π₯ β (Baseβ(ScalarβπΊ)) β§ π¦ β (BaseβπΊ)) β (π₯( Β·π βπΊ)π¦) β (BaseβπΊ)) |
16 | 15 | 3expb 1118 | . . . 4 β’ ((πΊ β LMod β§ (π₯ β (Baseβ(ScalarβπΊ)) β§ π¦ β (BaseβπΊ))) β (π₯( Β·π βπΊ)π¦) β (BaseβπΊ)) |
17 | 11, 16 | sylan 579 | . . 3 β’ ((πΊ β LVec β§ (π₯ β (Baseβ(ScalarβπΊ)) β§ π¦ β (BaseβπΊ))) β (π₯( Β·π βπΊ)π¦) β (BaseβπΊ)) |
18 | 17 | adantlr 714 | . 2 β’ (((πΊ β LVec β§ π β π) β§ (π₯ β (Baseβ(ScalarβπΊ)) β§ π¦ β (BaseβπΊ))) β (π₯( Β·π βπΊ)π¦) β (BaseβπΊ)) |
19 | 2, 13 | tngvsca 24573 | . . . 4 β’ (π β π β ( Β·π βπΊ) = ( Β·π βπ)) |
20 | 19 | adantl 481 | . . 3 β’ ((πΊ β LVec β§ π β π) β ( Β·π βπΊ) = ( Β·π βπ)) |
21 | 20 | oveqdr 7448 | . 2 β’ (((πΊ β LVec β§ π β π) β§ (π₯ β (Baseβ(ScalarβπΊ)) β§ π¦ β (BaseβπΊ))) β (π₯( Β·π βπΊ)π¦) = (π₯( Β·π βπ)π¦)) |
22 | eqid 2728 | . 2 β’ (Scalarβπ) = (Scalarβπ) | |
23 | eqidd 2729 | . 2 β’ ((πΊ β LVec β§ π β π) β (Baseβ(ScalarβπΊ)) = (Baseβ(ScalarβπΊ))) | |
24 | 2, 12 | tngsca 24571 | . . . 4 β’ (π β π β (ScalarβπΊ) = (Scalarβπ)) |
25 | 24 | adantl 481 | . . 3 β’ ((πΊ β LVec β§ π β π) β (ScalarβπΊ) = (Scalarβπ)) |
26 | 25 | fveq2d 6901 | . 2 β’ ((πΊ β LVec β§ π β π) β (Baseβ(ScalarβπΊ)) = (Baseβ(Scalarβπ))) |
27 | 25 | fveq2d 6901 | . . 3 β’ ((πΊ β LVec β§ π β π) β (+gβ(ScalarβπΊ)) = (+gβ(Scalarβπ))) |
28 | 27 | oveqdr 7448 | . 2 β’ (((πΊ β LVec β§ π β π) β§ (π₯ β (Baseβ(ScalarβπΊ)) β§ π¦ β (Baseβ(ScalarβπΊ)))) β (π₯(+gβ(ScalarβπΊ))π¦) = (π₯(+gβ(Scalarβπ))π¦)) |
29 | simpl 482 | . 2 β’ ((πΊ β LVec β§ π β π) β πΊ β LVec) | |
30 | 2 | tnglvec 33310 | . . 3 β’ (π β π β (πΊ β LVec β π β LVec)) |
31 | 30 | biimpac 478 | . 2 β’ ((πΊ β LVec β§ π β π) β π β LVec) |
32 | 1, 5, 6, 10, 18, 21, 12, 22, 23, 26, 28, 29, 31 | dimpropd 33306 | 1 β’ ((πΊ β LVec β§ π β π) β (dimβπΊ) = (dimβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βcfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 Scalarcsca 17236 Β·π cvsca 17237 LModclmod 20743 LVecclvec 20987 toNrmGrp ctng 24500 dimcldim 33296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-reg 9616 ax-inf2 9665 ax-ac2 10487 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-rpss 7728 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9534 df-r1 9788 df-rank 9789 df-dju 9925 df-card 9963 df-acn 9966 df-ac 10140 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-xnn0 12576 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-hash 14323 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ocomp 17254 df-ds 17255 df-0g 17423 df-mre 17566 df-mrc 17567 df-mri 17568 df-acs 17569 df-proset 18287 df-drs 18288 df-poset 18305 df-ipo 18520 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-subg 19078 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-drng 20626 df-lmod 20745 df-lss 20816 df-lsp 20856 df-lbs 20960 df-lvec 20988 df-tng 24506 df-dim 33297 |
This theorem is referenced by: rrxdim 33312 |
Copyright terms: Public domain | W3C validator |