Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tngdim | Structured version Visualization version GIF version |
Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
tnglvec.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
Ref | Expression |
---|---|
tngdim | ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (dim‘𝐺) = (dim‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (Base‘𝐺) = (Base‘𝐺)) | |
2 | tnglvec.t | . . . 4 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 2, 3 | tngbas 23808 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝑇)) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (Base‘𝐺) = (Base‘𝑇)) |
6 | ssidd 3943 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (Base‘𝐺) ⊆ (Base‘𝐺)) | |
7 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | 2, 7 | tngplusg 23810 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (+g‘𝐺) = (+g‘𝑇)) |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (+g‘𝐺) = (+g‘𝑇)) |
10 | 9 | oveqdr 7295 | . 2 ⊢ (((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
11 | lveclmod 20378 | . . . 4 ⊢ (𝐺 ∈ LVec → 𝐺 ∈ LMod) | |
12 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝐺) = (Scalar‘𝐺) | |
13 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐺) | |
14 | eqid 2738 | . . . . . 6 ⊢ (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)) | |
15 | 3, 12, 13, 14 | lmodvscl 20150 | . . . . 5 ⊢ ((𝐺 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥( ·𝑠 ‘𝐺)𝑦) ∈ (Base‘𝐺)) |
16 | 15 | 3expb 1119 | . . . 4 ⊢ ((𝐺 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠 ‘𝐺)𝑦) ∈ (Base‘𝐺)) |
17 | 11, 16 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠 ‘𝐺)𝑦) ∈ (Base‘𝐺)) |
18 | 17 | adantlr 712 | . 2 ⊢ (((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠 ‘𝐺)𝑦) ∈ (Base‘𝐺)) |
19 | 2, 13 | tngvsca 23817 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝑇)) |
20 | 19 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝑇)) |
21 | 20 | oveqdr 7295 | . 2 ⊢ (((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠 ‘𝐺)𝑦) = (𝑥( ·𝑠 ‘𝑇)𝑦)) |
22 | eqid 2738 | . 2 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
23 | eqidd 2739 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))) | |
24 | 2, 12 | tngsca 23815 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (Scalar‘𝐺) = (Scalar‘𝑇)) |
25 | 24 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝑇)) |
26 | 25 | fveq2d 6770 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑇))) |
27 | 25 | fveq2d 6770 | . . 3 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (+g‘(Scalar‘𝐺)) = (+g‘(Scalar‘𝑇))) |
28 | 27 | oveqdr 7295 | . 2 ⊢ (((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐺)))) → (𝑥(+g‘(Scalar‘𝐺))𝑦) = (𝑥(+g‘(Scalar‘𝑇))𝑦)) |
29 | simpl 483 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ LVec) | |
30 | 2 | tnglvec 31703 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec)) |
31 | 30 | biimpac 479 | . 2 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → 𝑇 ∈ LVec) |
32 | 1, 5, 6, 10, 18, 21, 12, 22, 23, 26, 28, 29, 31 | dimpropd 31700 | 1 ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (dim‘𝐺) = (dim‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 +gcplusg 16972 Scalarcsca 16975 ·𝑠 cvsca 16976 LModclmod 20133 LVecclvec 20374 toNrmGrp ctng 23744 dimcldim 31692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-reg 9338 ax-inf2 9386 ax-ac2 10229 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-rpss 7566 df-om 7703 df-1st 7820 df-2nd 7821 df-tpos 8029 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-oi 9256 df-r1 9532 df-rank 9533 df-dju 9669 df-card 9707 df-acn 9710 df-ac 9882 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-xnn0 12316 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-hash 14055 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ocomp 16993 df-ds 16994 df-0g 17162 df-mre 17305 df-mrc 17306 df-mri 17307 df-acs 17308 df-proset 18023 df-drs 18024 df-poset 18041 df-ipo 18256 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-submnd 18441 df-grp 18590 df-minusg 18591 df-sbg 18592 df-subg 18762 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-oppr 19872 df-dvdsr 19893 df-unit 19894 df-invr 19924 df-drng 20003 df-lmod 20135 df-lss 20204 df-lsp 20244 df-lbs 20347 df-lvec 20375 df-tng 23750 df-dim 31693 |
This theorem is referenced by: rrxdim 31705 |
Copyright terms: Public domain | W3C validator |