Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tngdim Structured version   Visualization version   GIF version

Theorem tngdim 33640
Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
tnglvec.t 𝑇 = (𝐺 toNrmGrp 𝑁)
Assertion
Ref Expression
tngdim ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))

Proof of Theorem tngdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2735 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝐺))
2 tnglvec.t . . . 4 𝑇 = (𝐺 toNrmGrp 𝑁)
3 eqid 2734 . . . 4 (Base‘𝐺) = (Base‘𝐺)
42, 3tngbas 24670 . . 3 (𝑁𝑉 → (Base‘𝐺) = (Base‘𝑇))
54adantl 481 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) = (Base‘𝑇))
6 ssidd 4018 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘𝐺) ⊆ (Base‘𝐺))
7 eqid 2734 . . . . 5 (+g𝐺) = (+g𝐺)
82, 7tngplusg 24672 . . . 4 (𝑁𝑉 → (+g𝐺) = (+g𝑇))
98adantl 481 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g𝐺) = (+g𝑇))
109oveqdr 7458 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
11 lveclmod 21122 . . . 4 (𝐺 ∈ LVec → 𝐺 ∈ LMod)
12 eqid 2734 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
13 eqid 2734 . . . . . 6 ( ·𝑠𝐺) = ( ·𝑠𝐺)
14 eqid 2734 . . . . . 6 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
153, 12, 13, 14lmodvscl 20892 . . . . 5 ((𝐺 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
16153expb 1119 . . . 4 ((𝐺 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1711, 16sylan 580 . . 3 ((𝐺 ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
1817adantlr 715 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) ∈ (Base‘𝐺))
192, 13tngvsca 24679 . . . 4 (𝑁𝑉 → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2019adantl 481 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → ( ·𝑠𝐺) = ( ·𝑠𝑇))
2120oveqdr 7458 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥( ·𝑠𝐺)𝑦) = (𝑥( ·𝑠𝑇)𝑦))
22 eqid 2734 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
23 eqidd 2735 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)))
242, 12tngsca 24677 . . . 4 (𝑁𝑉 → (Scalar‘𝐺) = (Scalar‘𝑇))
2524adantl 481 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Scalar‘𝐺) = (Scalar‘𝑇))
2625fveq2d 6910 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑇)))
2725fveq2d 6910 . . 3 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (+g‘(Scalar‘𝐺)) = (+g‘(Scalar‘𝑇)))
2827oveqdr 7458 . 2 (((𝐺 ∈ LVec ∧ 𝑁𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐺)))) → (𝑥(+g‘(Scalar‘𝐺))𝑦) = (𝑥(+g‘(Scalar‘𝑇))𝑦))
29 simpl 482 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝐺 ∈ LVec)
302tnglvec 33639 . . 3 (𝑁𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec))
3130biimpac 478 . 2 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → 𝑇 ∈ LVec)
321, 5, 6, 10, 18, 21, 12, 22, 23, 26, 28, 29, 31dimpropd 33635 1 ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  LModclmod 20874  LVecclvec 21118   toNrmGrp ctng 24606  dimcldim 33625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-reg 9629  ax-inf2 9678  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-rpss 7741  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-oi 9547  df-r1 9801  df-rank 9802  df-dju 9938  df-card 9976  df-acn 9979  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ocomp 17318  df-ds 17319  df-0g 17487  df-mre 17630  df-mrc 17631  df-mri 17632  df-acs 17633  df-proset 18351  df-drs 18352  df-poset 18370  df-ipo 18585  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-drng 20747  df-lmod 20876  df-lss 20947  df-lsp 20987  df-lbs 21091  df-lvec 21119  df-tng 24612  df-dim 33626
This theorem is referenced by:  rrxdim  33641
  Copyright terms: Public domain W3C validator