| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgply1 | Structured version Visualization version GIF version | ||
| Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
| subrgply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
| subrgply1.b | ⊢ 𝐵 = (Base‘𝑈) |
| Ref | Expression |
|---|---|
| subrgply1 | ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8423 | . . 3 ⊢ 1o ∈ On | |
| 2 | eqid 2729 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 3 | subrgply1.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 4 | eqid 2729 | . . . 4 ⊢ (1o mPoly 𝐻) = (1o mPoly 𝐻) | |
| 5 | subrgply1.u | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 6 | subrgply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 7 | 5, 6 | ply1bas 22112 | . . . 4 ⊢ 𝐵 = (Base‘(1o mPoly 𝐻)) |
| 8 | 2, 3, 4, 7 | subrgmpl 21972 | . . 3 ⊢ ((1o ∈ On ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘(1o mPoly 𝑅))) |
| 9 | 1, 8 | mpan 690 | . 2 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘(1o mPoly 𝑅))) |
| 10 | eqidd 2730 | . . 3 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆)) | |
| 11 | subrgply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 13 | 11, 12 | ply1bas 22112 | . . . 4 ⊢ (Base‘𝑆) = (Base‘(1o mPoly 𝑅)) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘(1o mPoly 𝑅))) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 16 | 11, 2, 15 | ply1plusg 22141 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘(1o mPoly 𝑅)) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (+g‘𝑆) = (+g‘(1o mPoly 𝑅))) |
| 18 | 17 | oveqdr 7397 | . . 3 ⊢ ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦)) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 20 | 11, 2, 19 | ply1mulr 22143 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘(1o mPoly 𝑅)) |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (.r‘𝑆) = (.r‘(1o mPoly 𝑅))) |
| 22 | 21 | oveqdr 7397 | . . 3 ⊢ ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦)) |
| 23 | 10, 14, 18, 22 | subrgpropd 20528 | . 2 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = (SubRing‘(1o mPoly 𝑅))) |
| 24 | 9, 23 | eleqtrrd 2831 | 1 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 .rcmulr 17197 SubRingcsubrg 20489 mPoly cmpl 21848 Poly1cpl1 22094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-subrng 20466 df-subrg 20490 df-psr 21851 df-mpl 21853 df-opsr 21855 df-psr1 22097 df-ply1 22099 |
| This theorem is referenced by: gsumply1subr 22151 asclply1subcl 22294 plypf1 26150 ressply1invg 33531 ressply1sub 33532 evls1subd 33534 irngss 33675 |
| Copyright terms: Public domain | W3C validator |