MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgply1 Structured version   Visualization version   GIF version

Theorem subrgply1 20400
Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
subrgply1.s 𝑆 = (Poly1𝑅)
subrgply1.h 𝐻 = (𝑅s 𝑇)
subrgply1.u 𝑈 = (Poly1𝐻)
subrgply1.b 𝐵 = (Base‘𝑈)
Assertion
Ref Expression
subrgply1 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))

Proof of Theorem subrgply1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 8108 . . 3 1o ∈ On
2 eqid 2821 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
3 subrgply1.h . . . 4 𝐻 = (𝑅s 𝑇)
4 eqid 2821 . . . 4 (1o mPoly 𝐻) = (1o mPoly 𝐻)
5 subrgply1.u . . . . 5 𝑈 = (Poly1𝐻)
6 eqid 2821 . . . . 5 (PwSer1𝐻) = (PwSer1𝐻)
7 subrgply1.b . . . . 5 𝐵 = (Base‘𝑈)
85, 6, 7ply1bas 20362 . . . 4 𝐵 = (Base‘(1o mPoly 𝐻))
92, 3, 4, 8subrgmpl 20240 . . 3 ((1o ∈ On ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘(1o mPoly 𝑅)))
101, 9mpan 688 . 2 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘(1o mPoly 𝑅)))
11 eqidd 2822 . . 3 (𝑇 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆))
12 subrgply1.s . . . . 5 𝑆 = (Poly1𝑅)
13 eqid 2821 . . . . 5 (PwSer1𝑅) = (PwSer1𝑅)
14 eqid 2821 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1512, 13, 14ply1bas 20362 . . . 4 (Base‘𝑆) = (Base‘(1o mPoly 𝑅))
1615a1i 11 . . 3 (𝑇 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘(1o mPoly 𝑅)))
17 eqid 2821 . . . . . 6 (+g𝑆) = (+g𝑆)
1812, 2, 17ply1plusg 20392 . . . . 5 (+g𝑆) = (+g‘(1o mPoly 𝑅))
1918a1i 11 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → (+g𝑆) = (+g‘(1o mPoly 𝑅)))
2019oveqdr 7183 . . 3 ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦))
21 eqid 2821 . . . . . 6 (.r𝑆) = (.r𝑆)
2212, 2, 21ply1mulr 20394 . . . . 5 (.r𝑆) = (.r‘(1o mPoly 𝑅))
2322a1i 11 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑆) = (.r‘(1o mPoly 𝑅)))
2423oveqdr 7183 . . 3 ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(.r𝑆)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦))
2511, 16, 20, 24subrgpropd 19569 . 2 (𝑇 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = (SubRing‘(1o mPoly 𝑅)))
2610, 25eleqtrrd 2916 1 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Oncon0 6190  cfv 6354  (class class class)co 7155  1oc1o 8094  Basecbs 16482  s cress 16483  +gcplusg 16564  .rcmulr 16565  SubRingcsubrg 19530   mPoly cmpl 20132  PwSer1cps1 20342  Poly1cpl1 20344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-ofr 7409  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-tset 16583  df-ple 16584  df-0g 16714  df-gsum 16715  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-mulg 18224  df-subg 18275  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-subrg 19532  df-psr 20135  df-mpl 20137  df-opsr 20139  df-psr1 20347  df-ply1 20349
This theorem is referenced by:  gsumply1subr  20401  plypf1  24801
  Copyright terms: Public domain W3C validator