| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphphl | Structured version Visualization version GIF version | ||
| Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| Ref | Expression |
|---|---|
| tcphphl | ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝑊)) | |
| 2 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | tcphbas 25126 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝐺)) |
| 6 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 7 | 2, 6 | tchplusg 25127 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝐺) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → (+g‘𝑊) = (+g‘𝐺)) |
| 9 | 8 | oveqdr 7422 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 10 | eqidd 2731 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 11 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 12 | 2, 11 | tcphsca 25130 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝐺) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺)) |
| 14 | eqid 2730 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 16 | 2, 15 | tcphvsca 25131 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (⊤ → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺)) |
| 18 | 17 | oveqdr 7422 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘𝑊)𝑦) = (𝑥( ·𝑠 ‘𝐺)𝑦)) |
| 19 | eqid 2730 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 2, 19 | tcphip 25132 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝐺) |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → (·𝑖‘𝑊) = (·𝑖‘𝐺)) |
| 22 | 21 | oveqdr 7422 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝐺)𝑦)) |
| 23 | 1, 5, 9, 10, 13, 14, 18, 22 | phlpropd 21570 | . 2 ⊢ (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)) |
| 24 | 23 | mptru 1547 | 1 ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ‘cfv 6519 Basecbs 17185 +gcplusg 17226 Scalarcsca 17229 ·𝑠 cvsca 17230 ·𝑖cip 17231 PreHilcphl 21539 toℂPreHilctcph 25074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-rp 12966 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ds 17248 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-ghm 19151 df-mgp 20056 df-ur 20097 df-ring 20150 df-lmod 20774 df-lmhm 20935 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-phl 21541 df-tng 24478 df-tcph 25076 |
| This theorem is referenced by: tcphcph 25144 |
| Copyright terms: Public domain | W3C validator |