| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphphl | Structured version Visualization version GIF version | ||
| Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| Ref | Expression |
|---|---|
| tcphphl | ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2735 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝑊)) | |
| 2 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | tcphbas 25156 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝐺)) |
| 6 | eqid 2734 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 7 | 2, 6 | tchplusg 25157 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝐺) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → (+g‘𝑊) = (+g‘𝐺)) |
| 9 | 8 | oveqdr 7427 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 10 | eqidd 2735 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 11 | eqid 2734 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 12 | 2, 11 | tcphsca 25160 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝐺) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺)) |
| 14 | eqid 2734 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 15 | eqid 2734 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 16 | 2, 15 | tcphvsca 25161 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (⊤ → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺)) |
| 18 | 17 | oveqdr 7427 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘𝑊)𝑦) = (𝑥( ·𝑠 ‘𝐺)𝑦)) |
| 19 | eqid 2734 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 2, 19 | tcphip 25162 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝐺) |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → (·𝑖‘𝑊) = (·𝑖‘𝐺)) |
| 22 | 21 | oveqdr 7427 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝐺)𝑦)) |
| 23 | 1, 5, 9, 10, 13, 14, 18, 22 | phlpropd 21600 | . 2 ⊢ (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)) |
| 24 | 23 | mptru 1546 | 1 ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ‘cfv 6527 Basecbs 17213 +gcplusg 17256 Scalarcsca 17259 ·𝑠 cvsca 17260 ·𝑖cip 17261 PreHilcphl 21569 toℂPreHilctcph 25104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-rp 13001 df-seq 14009 df-exp 14069 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ds 17278 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-grp 18904 df-ghm 19181 df-mgp 20086 df-ur 20127 df-ring 20180 df-lmod 20804 df-lmhm 20965 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-phl 21571 df-tng 24508 df-tcph 25106 |
| This theorem is referenced by: tcphcph 25174 |
| Copyright terms: Public domain | W3C validator |