MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphphl Structured version   Visualization version   GIF version

Theorem tcphphl 23517
Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypothesis
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
Assertion
Ref Expression
tcphphl (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)

Proof of Theorem tcphphl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2798 . . 3 (⊤ → (Base‘𝑊) = (Base‘𝑊))
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
3 eqid 2797 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
42, 3tcphbas 23509 . . . 4 (Base‘𝑊) = (Base‘𝐺)
54a1i 11 . . 3 (⊤ → (Base‘𝑊) = (Base‘𝐺))
6 eqid 2797 . . . . . 6 (+g𝑊) = (+g𝑊)
72, 6tchplusg 23510 . . . . 5 (+g𝑊) = (+g𝐺)
87a1i 11 . . . 4 (⊤ → (+g𝑊) = (+g𝐺))
98oveqdr 7051 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐺)𝑦))
10 eqidd 2798 . . 3 (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊))
11 eqid 2797 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
122, 11tcphsca 23513 . . . 4 (Scalar‘𝑊) = (Scalar‘𝐺)
1312a1i 11 . . 3 (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺))
14 eqid 2797 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
15 eqid 2797 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
162, 15tcphvsca 23514 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1716a1i 11 . . . 4 (⊤ → ( ·𝑠𝑊) = ( ·𝑠𝐺))
1817oveqdr 7051 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝐺)𝑦))
19 eqid 2797 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
202, 19tcphip 23515 . . . . 5 (·𝑖𝑊) = (·𝑖𝐺)
2120a1i 11 . . . 4 (⊤ → (·𝑖𝑊) = (·𝑖𝐺))
2221oveqdr 7051 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖𝑊)𝑦) = (𝑥(·𝑖𝐺)𝑦))
231, 5, 9, 10, 13, 14, 18, 22phlpropd 20485 . 2 (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil))
2423mptru 1532 1 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1525  wtru 1526  wcel 2083  cfv 6232  Basecbs 16316  +gcplusg 16398  Scalarcsca 16401   ·𝑠 cvsca 16402  ·𝑖cip 16403  PreHilcphl 20454  toℂPreHilctcph 23458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-rp 12244  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ds 16420  df-0g 16548  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-mhm 17778  df-grp 17868  df-ghm 18101  df-mgp 18934  df-ur 18946  df-ring 18993  df-lmod 19330  df-lmhm 19488  df-lvec 19569  df-sra 19638  df-rgmod 19639  df-phl 20456  df-tng 22881  df-tcph 23460
This theorem is referenced by:  tcphcph  23527
  Copyright terms: Public domain W3C validator