| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphphl | Structured version Visualization version GIF version | ||
| Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| Ref | Expression |
|---|---|
| tcphphl | ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝑊)) | |
| 2 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | tcphbas 25117 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝐺)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 7 | 2, 6 | tchplusg 25118 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝐺) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → (+g‘𝑊) = (+g‘𝐺)) |
| 9 | 8 | oveqdr 7377 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 10 | eqidd 2730 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 12 | 2, 11 | tcphsca 25121 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝐺) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺)) |
| 14 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 16 | 2, 15 | tcphvsca 25122 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (⊤ → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺)) |
| 18 | 17 | oveqdr 7377 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘𝑊)𝑦) = (𝑥( ·𝑠 ‘𝐺)𝑦)) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 2, 19 | tcphip 25123 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝐺) |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → (·𝑖‘𝑊) = (·𝑖‘𝐺)) |
| 22 | 21 | oveqdr 7377 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝐺)𝑦)) |
| 23 | 1, 5, 9, 10, 13, 14, 18, 22 | phlpropd 21562 | . 2 ⊢ (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)) |
| 24 | 23 | mptru 1547 | 1 ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ‘cfv 6482 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 ·𝑖cip 17166 PreHilcphl 21531 toℂPreHilctcph 25065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ds 17183 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20765 df-lmhm 20926 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-phl 21533 df-tng 24470 df-tcph 25067 |
| This theorem is referenced by: tcphcph 25135 |
| Copyright terms: Public domain | W3C validator |