| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphphl | Structured version Visualization version GIF version | ||
| Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| Ref | Expression |
|---|---|
| tcphphl | ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝑊)) | |
| 2 | tcphval.n | . . . . 5 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | tcphbas 25146 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝐺)) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 7 | 2, 6 | tchplusg 25147 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝐺) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → (+g‘𝑊) = (+g‘𝐺)) |
| 9 | 8 | oveqdr 7374 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 10 | eqidd 2732 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 12 | 2, 11 | tcphsca 25150 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝐺) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺)) |
| 14 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 15 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 16 | 2, 15 | tcphvsca 25151 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (⊤ → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺)) |
| 18 | 17 | oveqdr 7374 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘𝑊)𝑦) = (𝑥( ·𝑠 ‘𝐺)𝑦)) |
| 19 | eqid 2731 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 2, 19 | tcphip 25152 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝐺) |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → (·𝑖‘𝑊) = (·𝑖‘𝐺)) |
| 22 | 21 | oveqdr 7374 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝐺)𝑦)) |
| 23 | 1, 5, 9, 10, 13, 14, 18, 22 | phlpropd 21592 | . 2 ⊢ (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)) |
| 24 | 23 | mptru 1548 | 1 ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 ·𝑖cip 17166 PreHilcphl 21561 toℂPreHilctcph 25094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ds 17183 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-ghm 19125 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-lmhm 20956 df-lvec 21037 df-sra 21107 df-rgmod 21108 df-phl 21563 df-tng 24499 df-tcph 25096 |
| This theorem is referenced by: tcphcph 25164 |
| Copyright terms: Public domain | W3C validator |