MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphphl Structured version   Visualization version   GIF version

Theorem tcphphl 25164
Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypothesis
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
Assertion
Ref Expression
tcphphl (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)

Proof of Theorem tcphphl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2735 . . 3 (⊤ → (Base‘𝑊) = (Base‘𝑊))
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
3 eqid 2734 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
42, 3tcphbas 25156 . . . 4 (Base‘𝑊) = (Base‘𝐺)
54a1i 11 . . 3 (⊤ → (Base‘𝑊) = (Base‘𝐺))
6 eqid 2734 . . . . . 6 (+g𝑊) = (+g𝑊)
72, 6tchplusg 25157 . . . . 5 (+g𝑊) = (+g𝐺)
87a1i 11 . . . 4 (⊤ → (+g𝑊) = (+g𝐺))
98oveqdr 7427 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐺)𝑦))
10 eqidd 2735 . . 3 (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊))
11 eqid 2734 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
122, 11tcphsca 25160 . . . 4 (Scalar‘𝑊) = (Scalar‘𝐺)
1312a1i 11 . . 3 (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺))
14 eqid 2734 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
15 eqid 2734 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
162, 15tcphvsca 25161 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1716a1i 11 . . . 4 (⊤ → ( ·𝑠𝑊) = ( ·𝑠𝐺))
1817oveqdr 7427 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝐺)𝑦))
19 eqid 2734 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
202, 19tcphip 25162 . . . . 5 (·𝑖𝑊) = (·𝑖𝐺)
2120a1i 11 . . . 4 (⊤ → (·𝑖𝑊) = (·𝑖𝐺))
2221oveqdr 7427 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖𝑊)𝑦) = (𝑥(·𝑖𝐺)𝑦))
231, 5, 9, 10, 13, 14, 18, 22phlpropd 21600 . 2 (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil))
2423mptru 1546 1 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wtru 1540  wcel 2107  cfv 6527  Basecbs 17213  +gcplusg 17256  Scalarcsca 17259   ·𝑠 cvsca 17260  ·𝑖cip 17261  PreHilcphl 21569  toℂPreHilctcph 25104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-rp 13001  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ds 17278  df-0g 17440  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18746  df-grp 18904  df-ghm 19181  df-mgp 20086  df-ur 20127  df-ring 20180  df-lmod 20804  df-lmhm 20965  df-lvec 21046  df-sra 21116  df-rgmod 21117  df-phl 21571  df-tng 24508  df-tcph 25106
This theorem is referenced by:  tcphcph  25174
  Copyright terms: Public domain W3C validator