Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphphl Structured version   Visualization version   GIF version

Theorem tcphphl 23872
 Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypothesis
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
Assertion
Ref Expression
tcphphl (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)

Proof of Theorem tcphphl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . . 3 (⊤ → (Base‘𝑊) = (Base‘𝑊))
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
3 eqid 2798 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
42, 3tcphbas 23864 . . . 4 (Base‘𝑊) = (Base‘𝐺)
54a1i 11 . . 3 (⊤ → (Base‘𝑊) = (Base‘𝐺))
6 eqid 2798 . . . . . 6 (+g𝑊) = (+g𝑊)
72, 6tchplusg 23865 . . . . 5 (+g𝑊) = (+g𝐺)
87a1i 11 . . . 4 (⊤ → (+g𝑊) = (+g𝐺))
98oveqdr 7173 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐺)𝑦))
10 eqidd 2799 . . 3 (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊))
11 eqid 2798 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
122, 11tcphsca 23868 . . . 4 (Scalar‘𝑊) = (Scalar‘𝐺)
1312a1i 11 . . 3 (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺))
14 eqid 2798 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
15 eqid 2798 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
162, 15tcphvsca 23869 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1716a1i 11 . . . 4 (⊤ → ( ·𝑠𝑊) = ( ·𝑠𝐺))
1817oveqdr 7173 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝐺)𝑦))
19 eqid 2798 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
202, 19tcphip 23870 . . . . 5 (·𝑖𝑊) = (·𝑖𝐺)
2120a1i 11 . . . 4 (⊤ → (·𝑖𝑊) = (·𝑖𝐺))
2221oveqdr 7173 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖𝑊)𝑦) = (𝑥(·𝑖𝐺)𝑦))
231, 5, 9, 10, 13, 14, 18, 22phlpropd 20366 . 2 (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil))
2423mptru 1545 1 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2111  ‘cfv 6332  Basecbs 16495  +gcplusg 16577  Scalarcsca 16580   ·𝑠 cvsca 16581  ·𝑖cip 16582  PreHilcphl 20335  toℂPreHilctcph 23813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-sup 8908  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-rp 12398  df-seq 13385  df-exp 13446  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ds 16599  df-0g 16727  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-grp 18118  df-ghm 18369  df-mgp 19254  df-ur 19266  df-ring 19313  df-lmod 19650  df-lmhm 19808  df-lvec 19889  df-sra 19958  df-rgmod 19959  df-phl 20337  df-tng 23232  df-tcph 23815 This theorem is referenced by:  tcphcph  23882
 Copyright terms: Public domain W3C validator