Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhillvec Structured version   Visualization version   GIF version

Theorem hlhillvec 39995
Description: The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
hlhillvec.h 𝐻 = (LHyp‘𝐾)
hlhillvec.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhillvec.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhillvec (𝜑𝑈 ∈ LVec)

Proof of Theorem hlhillvec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhillvec.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2733 . . 3 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
3 hlhillvec.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 39149 . 2 (𝜑 → ((DVecH‘𝐾)‘𝑊) ∈ LVec)
5 eqidd 2734 . . 3 (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)))
6 hlhillvec.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
7 eqid 2733 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
81, 6, 3, 2, 7hlhilbase 39976 . . 3 (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈))
9 eqid 2733 . . 3 (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊))
10 eqid 2733 . . 3 (Scalar‘𝑈) = (Scalar‘𝑈)
11 eqidd 2734 . . 3 (𝜑 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))
12 eqid 2733 . . . 4 (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊)))
131, 2, 9, 6, 10, 3, 12hlhilsbase2 39986 . . 3 (𝜑 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘𝑈)))
14 eqid 2733 . . . . 5 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
151, 6, 3, 2, 14hlhilplus 39977 . . . 4 (𝜑 → (+g‘((DVecH‘𝐾)‘𝑊)) = (+g𝑈))
1615oveqdr 7323 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)))) → (𝑥(+g‘((DVecH‘𝐾)‘𝑊))𝑦) = (𝑥(+g𝑈)𝑦))
17 eqid 2733 . . . . 5 (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊)))
181, 2, 9, 6, 10, 3, 17hlhilsplus2 39987 . . . 4 (𝜑 → (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘𝑈)))
1918oveqdr 7323 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))) → (𝑥(+g‘(Scalar‘((DVecH‘𝐾)‘𝑊)))𝑦) = (𝑥(+g‘(Scalar‘𝑈))𝑦))
20 eqid 2733 . . . . 5 (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊)))
211, 2, 9, 6, 10, 3, 20hlhilsmul2 39988 . . . 4 (𝜑 → (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘𝑈)))
2221oveqdr 7323 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))) → (𝑥(.r‘(Scalar‘((DVecH‘𝐾)‘𝑊)))𝑦) = (𝑥(.r‘(Scalar‘𝑈))𝑦))
23 eqid 2733 . . . . 5 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
241, 2, 23, 6, 3hlhilvsca 39991 . . . 4 (𝜑 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠𝑈))
2524oveqdr 7323 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)))) → (𝑥( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))𝑦) = (𝑥( ·𝑠𝑈)𝑦))
265, 8, 9, 10, 11, 13, 16, 19, 22, 25lvecprop2d 20456 . 2 (𝜑 → (((DVecH‘𝐾)‘𝑊) ∈ LVec ↔ 𝑈 ∈ LVec))
274, 26mpbid 231 1 (𝜑𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  cfv 6447  Basecbs 16940  +gcplusg 16990  .rcmulr 16991  Scalarcsca 16993   ·𝑠 cvsca 16994  LVecclvec 20392  HLchlt 37390  LHypclh 38024  DVecHcdvh 39118  HLHilchlh 39972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-riotaBAD 36993
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-tpos 8062  df-undef 8109  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-n0 12262  df-z 12348  df-uz 12611  df-fz 13268  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-starv 17005  df-sca 17006  df-vsca 17007  df-ip 17008  df-0g 17180  df-proset 18041  df-poset 18059  df-plt 18076  df-lub 18092  df-glb 18093  df-join 18094  df-meet 18095  df-p0 18171  df-p1 18172  df-lat 18178  df-clat 18245  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-grp 18608  df-minusg 18609  df-mgp 19749  df-ur 19766  df-ring 19813  df-oppr 19890  df-dvdsr 19911  df-unit 19912  df-invr 19942  df-dvr 19953  df-drng 20021  df-lmod 20153  df-lvec 20393  df-oposet 37216  df-ol 37218  df-oml 37219  df-covers 37306  df-ats 37307  df-atl 37338  df-cvlat 37362  df-hlat 37391  df-llines 37538  df-lplanes 37539  df-lvols 37540  df-lines 37541  df-psubsp 37543  df-pmap 37544  df-padd 37836  df-lhyp 38028  df-laut 38029  df-ldil 38144  df-ltrn 38145  df-trl 38199  df-tendo 38795  df-edring 38797  df-dvech 39119  df-hlhil 39973
This theorem is referenced by:  hlhilphllem  40003
  Copyright terms: Public domain W3C validator