Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillvec | Structured version Visualization version GIF version |
Description: The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
hlhillvec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhillvec.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhillvec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlhillvec | ⊢ (𝜑 → 𝑈 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillvec.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2733 | . . 3 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
3 | hlhillvec.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlvec 39149 | . 2 ⊢ (𝜑 → ((DVecH‘𝐾)‘𝑊) ∈ LVec) |
5 | eqidd 2734 | . . 3 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))) | |
6 | hlhillvec.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
7 | eqid 2733 | . . . 4 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
8 | 1, 6, 3, 2, 7 | hlhilbase 39976 | . . 3 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈)) |
9 | eqid 2733 | . . 3 ⊢ (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊)) | |
10 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
11 | eqidd 2734 | . . 3 ⊢ (𝜑 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊)))) | |
12 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
13 | 1, 2, 9, 6, 10, 3, 12 | hlhilsbase2 39986 | . . 3 ⊢ (𝜑 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘𝑈))) |
14 | eqid 2733 | . . . . 5 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
15 | 1, 6, 3, 2, 14 | hlhilplus 39977 | . . . 4 ⊢ (𝜑 → (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘𝑈)) |
16 | 15 | oveqdr 7323 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)))) → (𝑥(+g‘((DVecH‘𝐾)‘𝑊))𝑦) = (𝑥(+g‘𝑈)𝑦)) |
17 | eqid 2733 | . . . . 5 ⊢ (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
18 | 1, 2, 9, 6, 10, 3, 17 | hlhilsplus2 39987 | . . . 4 ⊢ (𝜑 → (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘𝑈))) |
19 | 18 | oveqdr 7323 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))) → (𝑥(+g‘(Scalar‘((DVecH‘𝐾)‘𝑊)))𝑦) = (𝑥(+g‘(Scalar‘𝑈))𝑦)) |
20 | eqid 2733 | . . . . 5 ⊢ (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
21 | 1, 2, 9, 6, 10, 3, 20 | hlhilsmul2 39988 | . . . 4 ⊢ (𝜑 → (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘𝑈))) |
22 | 21 | oveqdr 7323 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))) → (𝑥(.r‘(Scalar‘((DVecH‘𝐾)‘𝑊)))𝑦) = (𝑥(.r‘(Scalar‘𝑈))𝑦)) |
23 | eqid 2733 | . . . . 5 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
24 | 1, 2, 23, 6, 3 | hlhilvsca 39991 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘𝑈)) |
25 | 24 | oveqdr 7323 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)))) → (𝑥( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))𝑦) = (𝑥( ·𝑠 ‘𝑈)𝑦)) |
26 | 5, 8, 9, 10, 11, 13, 16, 19, 22, 25 | lvecprop2d 20456 | . 2 ⊢ (𝜑 → (((DVecH‘𝐾)‘𝑊) ∈ LVec ↔ 𝑈 ∈ LVec)) |
27 | 4, 26 | mpbid 231 | 1 ⊢ (𝜑 → 𝑈 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 Basecbs 16940 +gcplusg 16990 .rcmulr 16991 Scalarcsca 16993 ·𝑠 cvsca 16994 LVecclvec 20392 HLchlt 37390 LHypclh 38024 DVecHcdvh 39118 HLHilchlh 39972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-riotaBAD 36993 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-tpos 8062 df-undef 8109 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-n0 12262 df-z 12348 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-0g 17180 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-p1 18172 df-lat 18178 df-clat 18245 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-grp 18608 df-minusg 18609 df-mgp 19749 df-ur 19766 df-ring 19813 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-invr 19942 df-dvr 19953 df-drng 20021 df-lmod 20153 df-lvec 20393 df-oposet 37216 df-ol 37218 df-oml 37219 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-llines 37538 df-lplanes 37539 df-lvols 37540 df-lines 37541 df-psubsp 37543 df-pmap 37544 df-padd 37836 df-lhyp 38028 df-laut 38029 df-ldil 38144 df-ltrn 38145 df-trl 38199 df-tendo 38795 df-edring 38797 df-dvech 39119 df-hlhil 39973 |
This theorem is referenced by: hlhilphllem 40003 |
Copyright terms: Public domain | W3C validator |