Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhillvec Structured version   Visualization version   GIF version

Theorem hlhillvec 41930
Description: The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
hlhillvec.h 𝐻 = (LHyp‘𝐾)
hlhillvec.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhillvec.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhillvec (𝜑𝑈 ∈ LVec)

Proof of Theorem hlhillvec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhillvec.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2729 . . 3 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
3 hlhillvec.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 41088 . 2 (𝜑 → ((DVecH‘𝐾)‘𝑊) ∈ LVec)
5 eqidd 2730 . . 3 (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)))
6 hlhillvec.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
7 eqid 2729 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
81, 6, 3, 2, 7hlhilbase 41915 . . 3 (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈))
9 eqid 2729 . . 3 (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊))
10 eqid 2729 . . 3 (Scalar‘𝑈) = (Scalar‘𝑈)
11 eqidd 2730 . . 3 (𝜑 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))
12 eqid 2729 . . . 4 (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊)))
131, 2, 9, 6, 10, 3, 12hlhilsbase2 41921 . . 3 (𝜑 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘𝑈)))
14 eqid 2729 . . . . 5 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
151, 6, 3, 2, 14hlhilplus 41916 . . . 4 (𝜑 → (+g‘((DVecH‘𝐾)‘𝑊)) = (+g𝑈))
1615oveqdr 7381 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)))) → (𝑥(+g‘((DVecH‘𝐾)‘𝑊))𝑦) = (𝑥(+g𝑈)𝑦))
17 eqid 2729 . . . . 5 (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊)))
181, 2, 9, 6, 10, 3, 17hlhilsplus2 41922 . . . 4 (𝜑 → (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘𝑈)))
1918oveqdr 7381 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))) → (𝑥(+g‘(Scalar‘((DVecH‘𝐾)‘𝑊)))𝑦) = (𝑥(+g‘(Scalar‘𝑈))𝑦))
20 eqid 2729 . . . . 5 (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊)))
211, 2, 9, 6, 10, 3, 20hlhilsmul2 41923 . . . 4 (𝜑 → (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘𝑈)))
2221oveqdr 7381 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))))) → (𝑥(.r‘(Scalar‘((DVecH‘𝐾)‘𝑊)))𝑦) = (𝑥(.r‘(Scalar‘𝑈))𝑦))
23 eqid 2729 . . . . 5 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
241, 2, 23, 6, 3hlhilvsca 41926 . . . 4 (𝜑 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠𝑈))
2524oveqdr 7381 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) ∧ 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)))) → (𝑥( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))𝑦) = (𝑥( ·𝑠𝑈)𝑦))
265, 8, 9, 10, 11, 13, 16, 19, 22, 25lvecprop2d 21091 . 2 (𝜑 → (((DVecH‘𝐾)‘𝑊) ∈ LVec ↔ 𝑈 ∈ LVec))
274, 26mpbid 232 1 (𝜑𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  LVecclvec 21024  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  HLHilchlh 41911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-lmod 20783  df-lvec 21025  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tendo 40734  df-edring 40736  df-dvech 41058  df-hlhil 41912
This theorem is referenced by:  hlhilphllem  41938
  Copyright terms: Public domain W3C validator