![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillvec | Structured version Visualization version GIF version |
Description: The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
hlhillvec.h | โข ๐ป = (LHypโ๐พ) |
hlhillvec.u | โข ๐ = ((HLHilโ๐พ)โ๐) |
hlhillvec.k | โข (๐ โ (๐พ โ HL โง ๐ โ ๐ป)) |
Ref | Expression |
---|---|
hlhillvec | โข (๐ โ ๐ โ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillvec.h | . . 3 โข ๐ป = (LHypโ๐พ) | |
2 | eqid 2732 | . . 3 โข ((DVecHโ๐พ)โ๐) = ((DVecHโ๐พ)โ๐) | |
3 | hlhillvec.k | . . 3 โข (๐ โ (๐พ โ HL โง ๐ โ ๐ป)) | |
4 | 1, 2, 3 | dvhlvec 39975 | . 2 โข (๐ โ ((DVecHโ๐พ)โ๐) โ LVec) |
5 | eqidd 2733 | . . 3 โข (๐ โ (Baseโ((DVecHโ๐พ)โ๐)) = (Baseโ((DVecHโ๐พ)โ๐))) | |
6 | hlhillvec.u | . . . 4 โข ๐ = ((HLHilโ๐พ)โ๐) | |
7 | eqid 2732 | . . . 4 โข (Baseโ((DVecHโ๐พ)โ๐)) = (Baseโ((DVecHโ๐พ)โ๐)) | |
8 | 1, 6, 3, 2, 7 | hlhilbase 40802 | . . 3 โข (๐ โ (Baseโ((DVecHโ๐พ)โ๐)) = (Baseโ๐)) |
9 | eqid 2732 | . . 3 โข (Scalarโ((DVecHโ๐พ)โ๐)) = (Scalarโ((DVecHโ๐พ)โ๐)) | |
10 | eqid 2732 | . . 3 โข (Scalarโ๐) = (Scalarโ๐) | |
11 | eqidd 2733 | . . 3 โข (๐ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) = (Baseโ(Scalarโ((DVecHโ๐พ)โ๐)))) | |
12 | eqid 2732 | . . . 4 โข (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) = (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) | |
13 | 1, 2, 9, 6, 10, 3, 12 | hlhilsbase2 40812 | . . 3 โข (๐ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) = (Baseโ(Scalarโ๐))) |
14 | eqid 2732 | . . . . 5 โข (+gโ((DVecHโ๐พ)โ๐)) = (+gโ((DVecHโ๐พ)โ๐)) | |
15 | 1, 6, 3, 2, 14 | hlhilplus 40803 | . . . 4 โข (๐ โ (+gโ((DVecHโ๐พ)โ๐)) = (+gโ๐)) |
16 | 15 | oveqdr 7436 | . . 3 โข ((๐ โง (๐ฅ โ (Baseโ((DVecHโ๐พ)โ๐)) โง ๐ฆ โ (Baseโ((DVecHโ๐พ)โ๐)))) โ (๐ฅ(+gโ((DVecHโ๐พ)โ๐))๐ฆ) = (๐ฅ(+gโ๐)๐ฆ)) |
17 | eqid 2732 | . . . . 5 โข (+gโ(Scalarโ((DVecHโ๐พ)โ๐))) = (+gโ(Scalarโ((DVecHโ๐พ)โ๐))) | |
18 | 1, 2, 9, 6, 10, 3, 17 | hlhilsplus2 40813 | . . . 4 โข (๐ โ (+gโ(Scalarโ((DVecHโ๐พ)โ๐))) = (+gโ(Scalarโ๐))) |
19 | 18 | oveqdr 7436 | . . 3 โข ((๐ โง (๐ฅ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) โง ๐ฆ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))))) โ (๐ฅ(+gโ(Scalarโ((DVecHโ๐พ)โ๐)))๐ฆ) = (๐ฅ(+gโ(Scalarโ๐))๐ฆ)) |
20 | eqid 2732 | . . . . 5 โข (.rโ(Scalarโ((DVecHโ๐พ)โ๐))) = (.rโ(Scalarโ((DVecHโ๐พ)โ๐))) | |
21 | 1, 2, 9, 6, 10, 3, 20 | hlhilsmul2 40814 | . . . 4 โข (๐ โ (.rโ(Scalarโ((DVecHโ๐พ)โ๐))) = (.rโ(Scalarโ๐))) |
22 | 21 | oveqdr 7436 | . . 3 โข ((๐ โง (๐ฅ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) โง ๐ฆ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))))) โ (๐ฅ(.rโ(Scalarโ((DVecHโ๐พ)โ๐)))๐ฆ) = (๐ฅ(.rโ(Scalarโ๐))๐ฆ)) |
23 | eqid 2732 | . . . . 5 โข ( ยท๐ โ((DVecHโ๐พ)โ๐)) = ( ยท๐ โ((DVecHโ๐พ)โ๐)) | |
24 | 1, 2, 23, 6, 3 | hlhilvsca 40817 | . . . 4 โข (๐ โ ( ยท๐ โ((DVecHโ๐พ)โ๐)) = ( ยท๐ โ๐)) |
25 | 24 | oveqdr 7436 | . . 3 โข ((๐ โง (๐ฅ โ (Baseโ(Scalarโ((DVecHโ๐พ)โ๐))) โง ๐ฆ โ (Baseโ((DVecHโ๐พ)โ๐)))) โ (๐ฅ( ยท๐ โ((DVecHโ๐พ)โ๐))๐ฆ) = (๐ฅ( ยท๐ โ๐)๐ฆ)) |
26 | 5, 8, 9, 10, 11, 13, 16, 19, 22, 25 | lvecprop2d 20778 | . 2 โข (๐ โ (((DVecHโ๐พ)โ๐) โ LVec โ ๐ โ LVec)) |
27 | 4, 26 | mpbid 231 | 1 โข (๐ โ ๐ โ LVec) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 โcfv 6543 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 ยท๐ cvsca 17200 LVecclvec 20712 HLchlt 38215 LHypclh 38850 DVecHcdvh 39944 HLHilchlh 40798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-undef 8257 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17386 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-drng 20358 df-lmod 20472 df-lvec 20713 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 df-tendo 39621 df-edring 39623 df-dvech 39945 df-hlhil 40799 |
This theorem is referenced by: hlhilphllem 40829 |
Copyright terms: Public domain | W3C validator |