Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatsrng1 | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
Ref | Expression |
---|---|
scmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatid.e | ⊢ 𝐸 = (Base‘𝑅) |
scmatid.0 | ⊢ 0 = (0g‘𝑅) |
scmatid.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmatsgrp1.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
scmatsgrp1.c | ⊢ 𝐶 = (𝐴 ↾s 𝐷) |
Ref | Expression |
---|---|
scmatsrng1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | scmatid.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | scmatid.e | . . 3 ⊢ 𝐸 = (Base‘𝑅) | |
4 | scmatid.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | scmatid.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
6 | scmatsgrp1.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
7 | scmatsgrp1.c | . . 3 ⊢ 𝐶 = (𝐴 ↾s 𝐷) | |
8 | 1, 2, 3, 4, 5, 6, 7 | scmatsgrp1 21579 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
9 | 1, 2, 4, 6 | dmatsrng 21558 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) |
10 | 9 | ancoms 458 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴)) |
11 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
12 | 7, 11 | subrg1 19949 | . . . . 5 ⊢ (𝐷 ∈ (SubRing‘𝐴) → (1r‘𝐴) = (1r‘𝐶)) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (1r‘𝐶)) |
14 | 13 | eqcomd 2744 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) = (1r‘𝐴)) |
15 | 1, 2, 3, 4, 5 | scmatid 21571 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
16 | 14, 15 | eqeltrd 2839 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) ∈ 𝑆) |
17 | eqid 2738 | . . . . . . . 8 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
18 | 7, 17 | ressmulr 16943 | . . . . . . 7 ⊢ (𝐷 ∈ (SubRing‘𝐴) → (.r‘𝐴) = (.r‘𝐶)) |
19 | 10, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r‘𝐴) = (.r‘𝐶)) |
20 | 19 | eqcomd 2744 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r‘𝐶) = (.r‘𝐴)) |
21 | 20 | oveqdr 7283 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(.r‘𝐶)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
22 | 1, 2, 3, 4, 5 | scmatmulcl 21575 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(.r‘𝐴)𝑦) ∈ 𝑆) |
23 | 21, 22 | eqeltrd 2839 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(.r‘𝐶)𝑦) ∈ 𝑆) |
24 | 23 | ralrimivva 3114 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝐶)𝑦) ∈ 𝑆) |
25 | 7 | subrgring 19942 | . . 3 ⊢ (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring) |
26 | eqid 2738 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
27 | eqid 2738 | . . . 4 ⊢ (1r‘𝐶) = (1r‘𝐶) | |
28 | eqid 2738 | . . . 4 ⊢ (.r‘𝐶) = (.r‘𝐶) | |
29 | 26, 27, 28 | issubrg2 19959 | . . 3 ⊢ (𝐶 ∈ Ring → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r‘𝐶) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝐶)𝑦) ∈ 𝑆))) |
30 | 10, 25, 29 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r‘𝐶) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝐶)𝑦) ∈ 𝑆))) |
31 | 8, 16, 24, 30 | mpbir3and 1340 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 ↾s cress 16867 .rcmulr 16889 0gc0g 17067 SubGrpcsubg 18664 1rcur 19652 Ringcrg 19698 SubRingcsubrg 19935 Mat cmat 21464 DMat cdmat 21545 ScMat cscmat 21546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mamu 21443 df-mat 21465 df-dmat 21547 df-scmat 21548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |