MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsrng1 Structured version   Visualization version   GIF version

Theorem scmatsrng1 20851
Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatsgrp1.d 𝐷 = (𝑁 DMat 𝑅)
scmatsgrp1.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
scmatsrng1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶))

Proof of Theorem scmatsrng1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 scmatid.b . . 3 𝐵 = (Base‘𝐴)
3 scmatid.e . . 3 𝐸 = (Base‘𝑅)
4 scmatid.0 . . 3 0 = (0g𝑅)
5 scmatid.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
6 scmatsgrp1.d . . 3 𝐷 = (𝑁 DMat 𝑅)
7 scmatsgrp1.c . . 3 𝐶 = (𝐴s 𝐷)
81, 2, 3, 4, 5, 6, 7scmatsgrp1 20850 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))
91, 2, 4, 6dmatsrng 20829 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
109ancoms 451 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴))
11 eqid 2780 . . . . . 6 (1r𝐴) = (1r𝐴)
127, 11subrg1 19280 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (1r𝐴) = (1r𝐶))
1310, 12syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (1r𝐶))
1413eqcomd 2786 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (1r𝐴))
151, 2, 3, 4, 5scmatid 20842 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝑆)
1614, 15eqeltrd 2868 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝑆)
17 eqid 2780 . . . . . . . 8 (.r𝐴) = (.r𝐴)
187, 17ressmulr 16487 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
1910, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (.r𝐶))
2019eqcomd 2786 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (.r𝐴))
2120oveqdr 7010 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
221, 2, 3, 4, 5scmatmulcl 20846 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) ∈ 𝑆)
2321, 22eqeltrd 2868 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐶)𝑦) ∈ 𝑆)
2423ralrimivva 3143 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)
257subrgring 19273 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
26 eqid 2780 . . . 4 (Base‘𝐶) = (Base‘𝐶)
27 eqid 2780 . . . 4 (1r𝐶) = (1r𝐶)
28 eqid 2780 . . . 4 (.r𝐶) = (.r𝐶)
2926, 27, 28issubrg2 19290 . . 3 (𝐶 ∈ Ring → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r𝐶) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)))
3010, 25, 293syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r𝐶) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)))
318, 16, 24, 30mpbir3and 1323 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3090  cfv 6193  (class class class)co 6982  Fincfn 8312  Basecbs 16345  s cress 16346  .rcmulr 16428  0gc0g 16575  SubGrpcsubg 18069  1rcur 18986  Ringcrg 19032  SubRingcsubrg 19266   Mat cmat 20735   DMat cdmat 20816   ScMat cscmat 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-ot 4453  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-sup 8707  df-oi 8775  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-fz 12715  df-fzo 12856  df-seq 13191  df-hash 13512  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-hom 16451  df-cco 16452  df-0g 16577  df-gsum 16578  df-prds 16583  df-pws 16585  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-mulg 18024  df-subg 18072  df-ghm 18139  df-cntz 18230  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-subrg 19268  df-lmod 19370  df-lss 19438  df-sra 19678  df-rgmod 19679  df-dsmm 20593  df-frlm 20608  df-mamu 20712  df-mat 20736  df-dmat 20818  df-scmat 20819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator