| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatsrng1 | Structured version Visualization version GIF version | ||
| Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
| Ref | Expression |
|---|---|
| scmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
| scmatid.e | ⊢ 𝐸 = (Base‘𝑅) |
| scmatid.0 | ⊢ 0 = (0g‘𝑅) |
| scmatid.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
| scmatsgrp1.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
| scmatsgrp1.c | ⊢ 𝐶 = (𝐴 ↾s 𝐷) |
| Ref | Expression |
|---|---|
| scmatsrng1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatid.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | scmatid.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | scmatid.e | . . 3 ⊢ 𝐸 = (Base‘𝑅) | |
| 4 | scmatid.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | scmatid.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
| 6 | scmatsgrp1.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
| 7 | scmatsgrp1.c | . . 3 ⊢ 𝐶 = (𝐴 ↾s 𝐷) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | scmatsgrp1 22430 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
| 9 | 1, 2, 4, 6 | dmatsrng 22409 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) |
| 10 | 9 | ancoms 458 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴)) |
| 11 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 12 | 7, 11 | subrg1 20490 | . . . . 5 ⊢ (𝐷 ∈ (SubRing‘𝐴) → (1r‘𝐴) = (1r‘𝐶)) |
| 13 | 10, 12 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (1r‘𝐶)) |
| 14 | 13 | eqcomd 2736 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) = (1r‘𝐴)) |
| 15 | 1, 2, 3, 4, 5 | scmatid 22422 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
| 16 | 14, 15 | eqeltrd 2829 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) ∈ 𝑆) |
| 17 | eqid 2730 | . . . . . . . 8 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 18 | 7, 17 | ressmulr 17203 | . . . . . . 7 ⊢ (𝐷 ∈ (SubRing‘𝐴) → (.r‘𝐴) = (.r‘𝐶)) |
| 19 | 10, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r‘𝐴) = (.r‘𝐶)) |
| 20 | 19 | eqcomd 2736 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r‘𝐶) = (.r‘𝐴)) |
| 21 | 20 | oveqdr 7369 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(.r‘𝐶)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
| 22 | 1, 2, 3, 4, 5 | scmatmulcl 22426 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(.r‘𝐴)𝑦) ∈ 𝑆) |
| 23 | 21, 22 | eqeltrd 2829 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(.r‘𝐶)𝑦) ∈ 𝑆) |
| 24 | 23 | ralrimivva 3173 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝐶)𝑦) ∈ 𝑆) |
| 25 | 7 | subrgring 20482 | . . 3 ⊢ (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring) |
| 26 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 27 | eqid 2730 | . . . 4 ⊢ (1r‘𝐶) = (1r‘𝐶) | |
| 28 | eqid 2730 | . . . 4 ⊢ (.r‘𝐶) = (.r‘𝐶) | |
| 29 | 26, 27, 28 | issubrg2 20500 | . . 3 ⊢ (𝐶 ∈ Ring → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r‘𝐶) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝐶)𝑦) ∈ 𝑆))) |
| 30 | 10, 25, 29 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r‘𝐶) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝐶)𝑦) ∈ 𝑆))) |
| 31 | 8, 16, 24, 30 | mpbir3and 1343 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 Basecbs 17112 ↾s cress 17133 .rcmulr 17154 0gc0g 17335 SubGrpcsubg 19025 1rcur 20092 Ringcrg 20144 SubRingcsubrg 20477 Mat cmat 22315 DMat cdmat 22396 ScMat cscmat 22397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-sra 21100 df-rgmod 21101 df-dsmm 21662 df-frlm 21677 df-mamu 22299 df-mat 22316 df-dmat 22398 df-scmat 22399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |