![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhildrng | Structured version Visualization version GIF version |
Description: The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhillvec.h | β’ π» = (LHypβπΎ) |
hlhillvec.u | β’ π = ((HLHilβπΎ)βπ) |
hlhillvec.k | β’ (π β (πΎ β HL β§ π β π»)) |
hlhildrng.r | β’ π = (Scalarβπ) |
Ref | Expression |
---|---|
hlhildrng | β’ (π β π β DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillvec.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
2 | hlhillvec.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | eqid 2732 | . . . 4 β’ ((EDRingβπΎ)βπ) = ((EDRingβπΎ)βπ) | |
4 | 2, 3 | erngdv 39852 | . . 3 β’ ((πΎ β HL β§ π β π») β ((EDRingβπΎ)βπ) β DivRing) |
5 | 1, 4 | syl 17 | . 2 β’ (π β ((EDRingβπΎ)βπ) β DivRing) |
6 | eqidd 2733 | . . 3 β’ (π β (Baseβ((EDRingβπΎ)βπ)) = (Baseβ((EDRingβπΎ)βπ))) | |
7 | hlhillvec.u | . . . 4 β’ π = ((HLHilβπΎ)βπ) | |
8 | hlhildrng.r | . . . 4 β’ π = (Scalarβπ) | |
9 | eqid 2732 | . . . 4 β’ (Baseβ((EDRingβπΎ)βπ)) = (Baseβ((EDRingβπΎ)βπ)) | |
10 | 2, 3, 7, 8, 1, 9 | hlhilsbase 40799 | . . 3 β’ (π β (Baseβ((EDRingβπΎ)βπ)) = (Baseβπ )) |
11 | eqid 2732 | . . . . 5 β’ (+gβ((EDRingβπΎ)βπ)) = (+gβ((EDRingβπΎ)βπ)) | |
12 | 2, 3, 7, 8, 1, 11 | hlhilsplus 40801 | . . . 4 β’ (π β (+gβ((EDRingβπΎ)βπ)) = (+gβπ )) |
13 | 12 | oveqdr 7433 | . . 3 β’ ((π β§ (π₯ β (Baseβ((EDRingβπΎ)βπ)) β§ π¦ β (Baseβ((EDRingβπΎ)βπ)))) β (π₯(+gβ((EDRingβπΎ)βπ))π¦) = (π₯(+gβπ )π¦)) |
14 | eqid 2732 | . . . . 5 β’ (.rβ((EDRingβπΎ)βπ)) = (.rβ((EDRingβπΎ)βπ)) | |
15 | 2, 3, 7, 8, 1, 14 | hlhilsmul 40803 | . . . 4 β’ (π β (.rβ((EDRingβπΎ)βπ)) = (.rβπ )) |
16 | 15 | oveqdr 7433 | . . 3 β’ ((π β§ (π₯ β (Baseβ((EDRingβπΎ)βπ)) β§ π¦ β (Baseβ((EDRingβπΎ)βπ)))) β (π₯(.rβ((EDRingβπΎ)βπ))π¦) = (π₯(.rβπ )π¦)) |
17 | 6, 10, 13, 16 | drngpropd 20344 | . 2 β’ (π β (((EDRingβπΎ)βπ) β DivRing β π β DivRing)) |
18 | 5, 17 | mpbid 231 | 1 β’ (π β π β DivRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6540 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 Scalarcsca 17196 DivRingcdr 20307 HLchlt 38208 LHypclh 38843 EDRingcedring 39612 HLHilchlh 40791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-drng 20309 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-tendo 39614 df-edring 39616 df-hlhil 40792 |
This theorem is referenced by: hlhilsrnglem 40816 |
Copyright terms: Public domain | W3C validator |