MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elplyr Structured version   Visualization version   GIF version

Theorem elplyr 25362
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elplyr ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝑆,𝑘,𝑧

Proof of Theorem elplyr
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝑆 ⊆ ℂ)
2 simp2 1136 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝑁 ∈ ℕ0)
3 simp3 1137 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴:ℕ0𝑆)
4 ssun1 4106 . . . . 5 𝑆 ⊆ (𝑆 ∪ {0})
5 fss 6617 . . . . 5 ((𝐴:ℕ0𝑆𝑆 ⊆ (𝑆 ∪ {0})) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
63, 4, 5sylancl 586 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
7 0cnd 10968 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 0 ∈ ℂ)
87snssd 4742 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → {0} ⊆ ℂ)
91, 8unssd 4120 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
10 cnex 10952 . . . . . 6 ℂ ∈ V
11 ssexg 5247 . . . . . 6 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
129, 10, 11sylancl 586 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑆 ∪ {0}) ∈ V)
13 nn0ex 12239 . . . . 5 0 ∈ V
14 elmapg 8628 . . . . 5 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1512, 13, 14sylancl 586 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
166, 15mpbird 256 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
17 eqidd 2739 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
18 oveq2 7283 . . . . . . 7 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1918sumeq1d 15413 . . . . . 6 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)))
2019mpteq2dv 5176 . . . . 5 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))))
2120eqeq2d 2749 . . . 4 (𝑛 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)))))
22 fveq1 6773 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2322oveq1d 7290 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2423sumeq2sdv 15416 . . . . . 6 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
2524mpteq2dv 5176 . . . . 5 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2625eqeq2d 2749 . . . 4 (𝑎 = 𝐴 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
2721, 26rspc2ev 3572 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
282, 16, 17, 27syl3anc 1370 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
29 elply 25356 . 2 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
301, 28, 29sylanbrc 583 1 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cun 3885  wss 3887  {csn 4561  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  0cc0 10871   · cmul 10876  0cn0 12233  ...cfz 13239  cexp 13782  Σcsu 15397  Polycply 25345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-sum 15398  df-ply 25349
This theorem is referenced by:  elplyd  25363  plypf1  25373  elaa2lem  43774
  Copyright terms: Public domain W3C validator