MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elplyr Structured version   Visualization version   GIF version

Theorem elplyr 24785
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elplyr ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝑆,𝑘,𝑧

Proof of Theorem elplyr
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝑆 ⊆ ℂ)
2 simp2 1133 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝑁 ∈ ℕ0)
3 simp3 1134 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴:ℕ0𝑆)
4 ssun1 4147 . . . . 5 𝑆 ⊆ (𝑆 ∪ {0})
5 fss 6521 . . . . 5 ((𝐴:ℕ0𝑆𝑆 ⊆ (𝑆 ∪ {0})) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
63, 4, 5sylancl 588 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
7 0cnd 10628 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 0 ∈ ℂ)
87snssd 4735 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → {0} ⊆ ℂ)
91, 8unssd 4161 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
10 cnex 10612 . . . . . 6 ℂ ∈ V
11 ssexg 5219 . . . . . 6 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
129, 10, 11sylancl 588 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑆 ∪ {0}) ∈ V)
13 nn0ex 11897 . . . . 5 0 ∈ V
14 elmapg 8413 . . . . 5 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1512, 13, 14sylancl 588 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
166, 15mpbird 259 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
17 eqidd 2822 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
18 oveq2 7158 . . . . . . 7 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1918sumeq1d 15052 . . . . . 6 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)))
2019mpteq2dv 5154 . . . . 5 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))))
2120eqeq2d 2832 . . . 4 (𝑛 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)))))
22 fveq1 6663 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2322oveq1d 7165 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2423sumeq2sdv 15055 . . . . . 6 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
2524mpteq2dv 5154 . . . . 5 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2625eqeq2d 2832 . . . 4 (𝑎 = 𝐴 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
2721, 26rspc2ev 3634 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
282, 16, 17, 27syl3anc 1367 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
29 elply 24779 . 2 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
301, 28, 29sylanbrc 585 1 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494  cun 3933  wss 3935  {csn 4560  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  cc 10529  0cc0 10531   · cmul 10536  0cn0 11891  ...cfz 12886  cexp 13423  Σcsu 15036  Polycply 24768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-sum 15037  df-ply 24772
This theorem is referenced by:  elplyd  24786  plypf1  24796  elaa2lem  42512
  Copyright terms: Public domain W3C validator