MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coef3 Structured version   Visualization version   GIF version

Theorem coef3 25374
Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coef3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)

Proof of Theorem coef3
StepHypRef Expression
1 plyssc 25342 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3921 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 0cn 10951 . 2 0 ∈ ℂ
4 dgrval.1 . . 3 𝐴 = (coeff‘𝐹)
54coef2 25373 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 0 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
62, 3, 5sylancl 585 1 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wf 6426  cfv 6430  cc 10853  0cc0 10855  0cn0 12216  Polycply 25326  coeffccoe 25328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-rlim 15179  df-sum 15379  df-0p 24815  df-ply 25330  df-coe 25332
This theorem is referenced by:  dgrub  25376  dgrub2  25377  dgrlb  25378  coeidlem  25379  coeid3  25382  plyco  25383  dgrle  25385  0dgrb  25388  coefv0  25390  coeaddlem  25391  coemullem  25392  coemulhi  25396  coemulc  25397  coe0  25398  coesub  25399  plycn  25403  dgreq0  25407  dgradd2  25410  dgrmul  25412  dgrcolem2  25416  plycjlem  25418  coecj  25420  plymul0or  25422  dvply2g  25426  plydivlem4  25437  plydiveu  25439  vieta1lem2  25452  vieta1  25453  elqaalem3  25462  aareccl  25467  ftalem1  26203  ftalem2  26204  ftalem4  26206  ftalem5  26207  signsplypnf  32508  dgrsub2  40940  mpaaeu  40955
  Copyright terms: Public domain W3C validator