MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coef3 Structured version   Visualization version   GIF version

Theorem coef3 24394
Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coef3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)

Proof of Theorem coef3
StepHypRef Expression
1 plyssc 24362 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3823 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 0cn 10355 . 2 0 ∈ ℂ
4 dgrval.1 . . 3 𝐴 = (coeff‘𝐹)
54coef2 24393 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 0 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
62, 3, 5sylancl 580 1 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  wf 6123  cfv 6127  cc 10257  0cc0 10259  0cn0 11625  Polycply 24346  coeffccoe 24348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-fl 12895  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-rlim 14604  df-sum 14801  df-0p 23843  df-ply 24350  df-coe 24352
This theorem is referenced by:  dgrub  24396  dgrub2  24397  dgrlb  24398  coeidlem  24399  coeid3  24402  plyco  24403  dgrle  24405  0dgrb  24408  coefv0  24410  coeaddlem  24411  coemullem  24412  coemulhi  24416  coemulc  24417  coe0  24418  coesub  24419  plycn  24423  dgreq0  24427  dgradd2  24430  dgrmul  24432  dgrcolem2  24436  plycjlem  24438  coecj  24440  plymul0or  24442  dvply2g  24446  plydivlem4  24457  plydiveu  24459  vieta1lem2  24472  vieta1  24473  elqaalem3  24482  aareccl  24487  ftalem1  25219  ftalem2  25220  ftalem4  25222  ftalem5  25223  signsplypnf  31170  dgrsub2  38543  mpaaeu  38558
  Copyright terms: Public domain W3C validator