MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnply Structured version   Visualization version   GIF version

Theorem dvnply 26037
Description: Polynomials have polynomials as derivatives of all orders. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvnply ((𝐹 ∈ (Polyβ€˜π‘†) ∧ 𝑁 ∈ β„•0) β†’ ((β„‚ D𝑛 𝐹)β€˜π‘) ∈ (Polyβ€˜β„‚))

Proof of Theorem dvnply
StepHypRef Expression
1 plyssc 25949 . . 3 (Polyβ€˜π‘†) βŠ† (Polyβ€˜β„‚)
21sseli 3977 . 2 (𝐹 ∈ (Polyβ€˜π‘†) β†’ 𝐹 ∈ (Polyβ€˜β„‚))
3 cnring 21167 . . . 4 β„‚fld ∈ Ring
4 cnfldbas 21148 . . . . 5 β„‚ = (Baseβ€˜β„‚fld)
54subrgid 20463 . . . 4 (β„‚fld ∈ Ring β†’ β„‚ ∈ (SubRingβ€˜β„‚fld))
63, 5ax-mp 5 . . 3 β„‚ ∈ (SubRingβ€˜β„‚fld)
7 dvnply2 26036 . . 3 ((β„‚ ∈ (SubRingβ€˜β„‚fld) ∧ 𝐹 ∈ (Polyβ€˜β„‚) ∧ 𝑁 ∈ β„•0) β†’ ((β„‚ D𝑛 𝐹)β€˜π‘) ∈ (Polyβ€˜β„‚))
86, 7mp3an1 1446 . 2 ((𝐹 ∈ (Polyβ€˜β„‚) ∧ 𝑁 ∈ β„•0) β†’ ((β„‚ D𝑛 𝐹)β€˜π‘) ∈ (Polyβ€˜β„‚))
92, 8sylan 578 1 ((𝐹 ∈ (Polyβ€˜π‘†) ∧ 𝑁 ∈ β„•0) β†’ ((β„‚ D𝑛 𝐹)β€˜π‘) ∈ (Polyβ€˜β„‚))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∈ wcel 2104  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  β„•0cn0 12476  Ringcrg 20127  SubRingcsubrg 20457  β„‚fldccnfld 21144   D𝑛 cdvn 25613  Polycply 25933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-grp 18858  df-minusg 18859  df-mulg 18987  df-subg 19039  df-cntz 19222  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-subrng 20434  df-subrg 20459  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-0p 25419  df-limc 25615  df-dv 25616  df-dvn 25617  df-ply 25937  df-coe 25939  df-dgr 25940
This theorem is referenced by:  plycpn  26038
  Copyright terms: Public domain W3C validator