MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlt2 Structured version   Visualization version   GIF version

Theorem radcnvlt2 25576
Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvlt.x (𝜑𝑋 ∈ ℂ)
radcnvlt.a (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
radcnvlt2 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvlt2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12619 . 2 0 = (ℤ‘0)
2 0zd 12331 . 2 (𝜑 → 0 ∈ ℤ)
3 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
5 radcnvlt.x . . . 4 (𝜑𝑋 ∈ ℂ)
63, 4, 5psergf 25569 . . 3 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
7 fvco3 6864 . . 3 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
86, 7sylan 580 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
96ffvelrnda 6958 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
10 radcnv.r . . . 4 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
11 radcnvlt.a . . . 4 (𝜑 → (abs‘𝑋) < 𝑅)
12 id 22 . . . . . 6 (𝑚 = 𝑘𝑚 = 𝑘)
13 2fveq3 6776 . . . . . 6 (𝑚 = 𝑘 → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐺𝑋)‘𝑘)))
1412, 13oveq12d 7289 . . . . 5 (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
1514cbvmptv 5192 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
163, 4, 10, 5, 11, 15radcnvlt1 25575 . . 3 (𝜑 → (seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
1716simprd 496 . 2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
181, 2, 8, 9, 17abscvgcvg 15529 1 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070   class class class wbr 5079  cmpt 5162  dom cdm 5590  ccom 5594  wf 6428  cfv 6432  (class class class)co 7271  supcsup 9177  cc 10870  cr 10871  0cc0 10872   + caddc 10875   · cmul 10877  *cxr 11009   < clt 11010  0cn0 12233  seqcseq 13719  cexp 13780  abscabs 14943  cli 15191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396
This theorem is referenced by:  pserulm  25579  pserdvlem2  25585  abelthlem3  25590  binomcxplemcvg  41942
  Copyright terms: Public domain W3C validator