| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > radcnvlt2 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| radcnvlt.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| radcnvlt.a | ⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
| Ref | Expression |
|---|---|
| radcnvlt2 | ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12899 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12605 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 4 | radcnv.a | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 5 | radcnvlt.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 6 | 3, 4, 5 | psergf 26378 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
| 7 | fvco3 6983 | . . 3 ⊢ (((𝐺‘𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
| 8 | 6, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 9 | 6 | ffvelcdmda 7079 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑘) ∈ ℂ) |
| 10 | radcnv.r | . . . 4 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 11 | radcnvlt.a | . . . 4 ⊢ (𝜑 → (abs‘𝑋) < 𝑅) | |
| 12 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) | |
| 13 | 2fveq3 6886 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (abs‘((𝐺‘𝑋)‘𝑚)) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
| 14 | 12, 13 | oveq12d 7428 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 15 | 14 | cbvmptv 5230 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 16 | 3, 4, 10, 5, 11, 15 | radcnvlt1 26384 | . . 3 ⊢ (𝜑 → (seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) |
| 17 | 16 | simprd 495 | . 2 ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) |
| 18 | 1, 2, 8, 9, 17 | abscvgcvg 15840 | 1 ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 ↦ cmpt 5206 dom cdm 5659 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 supcsup 9457 ℂcc 11132 ℝcr 11133 0cc0 11134 + caddc 11137 · cmul 11139 ℝ*cxr 11273 < clt 11274 ℕ0cn0 12506 seqcseq 14024 ↑cexp 14084 abscabs 15258 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 |
| This theorem is referenced by: pserulm 26388 pserdvlem2 26395 abelthlem3 26400 binomcxplemcvg 44353 |
| Copyright terms: Public domain | W3C validator |