| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > radcnvlt2 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| radcnvlt.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| radcnvlt.a | ⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
| Ref | Expression |
|---|---|
| radcnvlt2 | ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12777 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12483 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 4 | radcnv.a | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 5 | radcnvlt.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 6 | 3, 4, 5 | psergf 26319 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
| 7 | fvco3 6922 | . . 3 ⊢ (((𝐺‘𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
| 8 | 6, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 9 | 6 | ffvelcdmda 7018 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑘) ∈ ℂ) |
| 10 | radcnv.r | . . . 4 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 11 | radcnvlt.a | . . . 4 ⊢ (𝜑 → (abs‘𝑋) < 𝑅) | |
| 12 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) | |
| 13 | 2fveq3 6827 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (abs‘((𝐺‘𝑋)‘𝑚)) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
| 14 | 12, 13 | oveq12d 7367 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 15 | 14 | cbvmptv 5196 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 16 | 3, 4, 10, 5, 11, 15 | radcnvlt1 26325 | . . 3 ⊢ (𝜑 → (seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) |
| 17 | 16 | simprd 495 | . 2 ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) |
| 18 | 1, 2, 8, 9, 17 | abscvgcvg 15726 | 1 ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 supcsup 9330 ℂcc 11007 ℝcr 11008 0cc0 11009 + caddc 11012 · cmul 11014 ℝ*cxr 11148 < clt 11149 ℕ0cn0 12384 seqcseq 13908 ↑cexp 13968 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: pserulm 26329 pserdvlem2 26336 abelthlem3 26341 binomcxplemcvg 44347 |
| Copyright terms: Public domain | W3C validator |