![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnvlt2 | Structured version Visualization version GIF version |
Description: If π is within the open disk of radius π centered at zero, then the infinite series converges at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) |
radcnv.a | β’ (π β π΄:β0βΆβ) |
radcnv.r | β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) |
radcnvlt.x | β’ (π β π β β) |
radcnvlt.a | β’ (π β (absβπ) < π ) |
Ref | Expression |
---|---|
radcnvlt2 | β’ (π β seq0( + , (πΊβπ)) β dom β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12863 | . 2 β’ β0 = (β€β₯β0) | |
2 | 0zd 12569 | . 2 β’ (π β 0 β β€) | |
3 | pser.g | . . . 4 β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) | |
4 | radcnv.a | . . . 4 β’ (π β π΄:β0βΆβ) | |
5 | radcnvlt.x | . . . 4 β’ (π β π β β) | |
6 | 3, 4, 5 | psergf 25923 | . . 3 β’ (π β (πΊβπ):β0βΆβ) |
7 | fvco3 6990 | . . 3 β’ (((πΊβπ):β0βΆβ β§ π β β0) β ((abs β (πΊβπ))βπ) = (absβ((πΊβπ)βπ))) | |
8 | 6, 7 | sylan 580 | . 2 β’ ((π β§ π β β0) β ((abs β (πΊβπ))βπ) = (absβ((πΊβπ)βπ))) |
9 | 6 | ffvelcdmda 7086 | . 2 β’ ((π β§ π β β0) β ((πΊβπ)βπ) β β) |
10 | radcnv.r | . . . 4 β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) | |
11 | radcnvlt.a | . . . 4 β’ (π β (absβπ) < π ) | |
12 | id 22 | . . . . . 6 β’ (π = π β π = π) | |
13 | 2fveq3 6896 | . . . . . 6 β’ (π = π β (absβ((πΊβπ)βπ)) = (absβ((πΊβπ)βπ))) | |
14 | 12, 13 | oveq12d 7426 | . . . . 5 β’ (π = π β (π Β· (absβ((πΊβπ)βπ))) = (π Β· (absβ((πΊβπ)βπ)))) |
15 | 14 | cbvmptv 5261 | . . . 4 β’ (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) |
16 | 3, 4, 10, 5, 11, 15 | radcnvlt1 25929 | . . 3 β’ (π β (seq0( + , (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ))))) β dom β β§ seq0( + , (abs β (πΊβπ))) β dom β )) |
17 | 16 | simprd 496 | . 2 β’ (π β seq0( + , (abs β (πΊβπ))) β dom β ) |
18 | 1, 2, 8, 9, 17 | abscvgcvg 15764 | 1 β’ (π β seq0( + , (πΊβπ)) β dom β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 β ccom 5680 βΆwf 6539 βcfv 6543 (class class class)co 7408 supcsup 9434 βcc 11107 βcr 11108 0cc0 11109 + caddc 11112 Β· cmul 11114 β*cxr 11246 < clt 11247 β0cn0 12471 seqcseq 13965 βcexp 14026 abscabs 15180 β cli 15427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 |
This theorem is referenced by: pserulm 25933 pserdvlem2 25939 abelthlem3 25944 binomcxplemcvg 43103 |
Copyright terms: Public domain | W3C validator |