![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnvlt2 | Structured version Visualization version GIF version |
Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
radcnvlt.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
radcnvlt.a | ⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
Ref | Expression |
---|---|
radcnvlt2 | ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12918 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12623 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
4 | radcnv.a | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
5 | radcnvlt.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
6 | 3, 4, 5 | psergf 26470 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
7 | fvco3 7008 | . . 3 ⊢ (((𝐺‘𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
8 | 6, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) |
9 | 6 | ffvelcdmda 7104 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑘) ∈ ℂ) |
10 | radcnv.r | . . . 4 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
11 | radcnvlt.a | . . . 4 ⊢ (𝜑 → (abs‘𝑋) < 𝑅) | |
12 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) | |
13 | 2fveq3 6912 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (abs‘((𝐺‘𝑋)‘𝑚)) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
14 | 12, 13 | oveq12d 7449 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
15 | 14 | cbvmptv 5261 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
16 | 3, 4, 10, 5, 11, 15 | radcnvlt1 26476 | . . 3 ⊢ (𝜑 → (seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) |
17 | 16 | simprd 495 | . 2 ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) |
18 | 1, 2, 8, 9, 17 | abscvgcvg 15852 | 1 ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supcsup 9478 ℂcc 11151 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 ℝ*cxr 11292 < clt 11293 ℕ0cn0 12524 seqcseq 14039 ↑cexp 14099 abscabs 15270 ⇝ cli 15517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 |
This theorem is referenced by: pserulm 26480 pserdvlem2 26487 abelthlem3 26492 binomcxplemcvg 44350 |
Copyright terms: Public domain | W3C validator |