![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnvlt2 | Structured version Visualization version GIF version |
Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
radcnvlt.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
radcnvlt.a | ⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
Ref | Expression |
---|---|
radcnvlt2 | ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12033 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 11745 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
4 | radcnv.a | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
5 | radcnvlt.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
6 | 3, 4, 5 | psergf 24614 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
7 | fvco3 6537 | . . 3 ⊢ (((𝐺‘𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
8 | 6, 7 | sylan 575 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) |
9 | 6 | ffvelrnda 6625 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑘) ∈ ℂ) |
10 | radcnv.r | . . . 4 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
11 | radcnvlt.a | . . . 4 ⊢ (𝜑 → (abs‘𝑋) < 𝑅) | |
12 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) | |
13 | 2fveq3 6453 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (abs‘((𝐺‘𝑋)‘𝑚)) = (abs‘((𝐺‘𝑋)‘𝑘))) | |
14 | 12, 13 | oveq12d 6942 | . . . . 5 ⊢ (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
15 | 14 | cbvmptv 4987 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
16 | 3, 4, 10, 5, 11, 15 | radcnvlt1 24620 | . . 3 ⊢ (𝜑 → (seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) |
17 | 16 | simprd 491 | . 2 ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) |
18 | 1, 2, 8, 9, 17 | abscvgcvg 14964 | 1 ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 {crab 3094 class class class wbr 4888 ↦ cmpt 4967 dom cdm 5357 ∘ ccom 5361 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 supcsup 8636 ℂcc 10272 ℝcr 10273 0cc0 10274 + caddc 10277 · cmul 10279 ℝ*cxr 10412 < clt 10413 ℕ0cn0 11647 seqcseq 13124 ↑cexp 13183 abscabs 14387 ⇝ cli 14632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-ico 12498 df-icc 12499 df-fz 12649 df-fzo 12790 df-fl 12917 df-seq 13125 df-exp 13184 df-hash 13442 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-limsup 14619 df-clim 14636 df-rlim 14637 df-sum 14834 |
This theorem is referenced by: pserulm 24624 pserdvlem2 24630 abelthlem3 24635 binomcxplemcvg 39523 |
Copyright terms: Public domain | W3C validator |