| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 12920 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | 1nn0 12542 |
. . 3
⊢ 1 ∈
ℕ0 |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → 1 ∈
ℕ0) |
| 4 | | id 22 |
. . . . . 6
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) |
| 5 | | 2fveq3 6911 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (abs‘((𝐺‘𝑋)‘𝑚)) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 6 | 4, 5 | oveq12d 7449 |
. . . . 5
⊢ (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 7 | | eqid 2737 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
↦ (𝑚 ·
(abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
| 8 | | ovex 7464 |
. . . . 5
⊢ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘))) ∈ V |
| 9 | 6, 7, 8 | fvmpt 7016 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 10 | 9 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ (𝑚 ·
(abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 11 | | nn0re 12535 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 12 | 11 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℝ) |
| 13 | | pser.g |
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 14 | | radcnv.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 15 | | psergf.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 16 | 13, 14, 15 | psergf 26455 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
| 17 | 16 | ffvelcdmda 7104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑘) ∈ ℂ) |
| 18 | 17 | abscld 15475 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐺‘𝑋)‘𝑘)) ∈ ℝ) |
| 19 | 12, 18 | remulcld 11291 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘))) ∈ ℝ) |
| 20 | 10, 19 | eqeltrd 2841 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ (𝑚 ·
(abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘) ∈ ℝ) |
| 21 | | fvco3 7008 |
. . . 4
⊢ (((𝐺‘𝑋):ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((abs ∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 22 | 16, 21 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((abs
∘ (𝐺‘𝑋))‘𝑘) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 23 | 18 | recnd 11289 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐺‘𝑋)‘𝑘)) ∈ ℂ) |
| 24 | 22, 23 | eqeltrd 2841 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((abs
∘ (𝐺‘𝑋))‘𝑘) ∈ ℂ) |
| 25 | | radcnvlem2.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 26 | | radcnvlem2.a |
. . 3
⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) |
| 27 | | radcnvlem2.c |
. . 3
⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) |
| 28 | 6 | cbvmptv 5255 |
. . 3
⊢ (𝑚 ∈ ℕ0
↦ (𝑚 ·
(abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 29 | 13, 14, 15, 25, 26, 27, 28 | radcnvlem1 26456 |
. 2
⊢ (𝜑 → seq0( + , (𝑚 ∈ ℕ0
↦ (𝑚 ·
(abs‘((𝐺‘𝑋)‘𝑚))))) ∈ dom ⇝ ) |
| 30 | | 1red 11262 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
| 31 | | 1red 11262 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 1 ∈ ℝ) |
| 32 | | elnnuz 12922 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
| 33 | | nnnn0 12533 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 34 | 32, 33 | sylbir 235 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘1) → 𝑘 ∈ ℕ0) |
| 35 | 34, 12 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 𝑘 ∈
ℝ) |
| 36 | 34, 18 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (abs‘((𝐺‘𝑋)‘𝑘)) ∈ ℝ) |
| 37 | 17 | absge0d 15483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
(abs‘((𝐺‘𝑋)‘𝑘))) |
| 38 | 34, 37 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 0 ≤ (abs‘((𝐺‘𝑋)‘𝑘))) |
| 39 | | eluzle 12891 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘1) → 1 ≤ 𝑘) |
| 40 | 39 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 1 ≤ 𝑘) |
| 41 | 31, 35, 36, 38, 40 | lemul1ad 12207 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (1 · (abs‘((𝐺‘𝑋)‘𝑘))) ≤ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 42 | | absidm 15362 |
. . . . . 6
⊢ (((𝐺‘𝑋)‘𝑘) ∈ ℂ →
(abs‘(abs‘((𝐺‘𝑋)‘𝑘))) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 43 | 17, 42 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(abs‘((𝐺‘𝑋)‘𝑘))) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 44 | 22 | fveq2d 6910 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((abs ∘ (𝐺‘𝑋))‘𝑘)) = (abs‘(abs‘((𝐺‘𝑋)‘𝑘)))) |
| 45 | 23 | mullidd 11279 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1
· (abs‘((𝐺‘𝑋)‘𝑘))) = (abs‘((𝐺‘𝑋)‘𝑘))) |
| 46 | 43, 44, 45 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((abs ∘ (𝐺‘𝑋))‘𝑘)) = (1 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 47 | 34, 46 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (abs‘((abs ∘ (𝐺‘𝑋))‘𝑘)) = (1 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 48 | 10 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1
· ((𝑚 ∈
ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘)) = (1 · (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘))))) |
| 49 | 19 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘))) ∈ ℂ) |
| 50 | 49 | mullidd 11279 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1
· (𝑘 ·
(abs‘((𝐺‘𝑋)‘𝑘)))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 51 | 48, 50 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1
· ((𝑚 ∈
ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 52 | 34, 51 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (1 · ((𝑚
∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
| 53 | 41, 47, 52 | 3brtr4d 5175 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (abs‘((abs ∘ (𝐺‘𝑋))‘𝑘)) ≤ (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))‘𝑘))) |
| 54 | 1, 3, 20, 24, 29, 30, 53 | cvgcmpce 15854 |
1
⊢ (𝜑 → seq0( + , (abs ∘
(𝐺‘𝑋))) ∈ dom ⇝ ) |