MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem2 Structured version   Visualization version   GIF version

Theorem radcnvlem2 26357
Description: Lemma for radcnvlt1 26361, radcnvle 26363. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvlem2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12813 . 2 0 = (ℤ‘0)
2 1nn0 12436 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 id 22 . . . . . 6 (𝑚 = 𝑘𝑚 = 𝑘)
5 2fveq3 6845 . . . . . 6 (𝑚 = 𝑘 → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐺𝑋)‘𝑘)))
64, 5oveq12d 7387 . . . . 5 (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
7 eqid 2729 . . . . 5 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
8 ovex 7402 . . . . 5 (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ V
96, 7, 8fvmpt 6950 . . . 4 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
109adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
11 nn0re 12429 . . . . 5 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
1211adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
13 pser.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
14 radcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
15 psergf.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
1613, 14, 15psergf 26355 . . . . . 6 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
1716ffvelcdmda 7038 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
1817abscld 15382 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
1912, 18remulcld 11182 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℝ)
2010, 19eqeltrd 2828 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) ∈ ℝ)
21 fvco3 6942 . . . 4 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2216, 21sylan 580 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2318recnd 11180 . . 3 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℂ)
2422, 23eqeltrd 2828 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) ∈ ℂ)
25 radcnvlem2.y . . 3 (𝜑𝑌 ∈ ℂ)
26 radcnvlem2.a . . 3 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
27 radcnvlem2.c . . 3 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
286cbvmptv 5206 . . 3 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
2913, 14, 15, 25, 26, 27, 28radcnvlem1 26356 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))) ∈ dom ⇝ )
30 1red 11153 . 2 (𝜑 → 1 ∈ ℝ)
31 1red 11153 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ∈ ℝ)
32 elnnuz 12815 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
33 nnnn0 12427 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3432, 33sylbir 235 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
3534, 12sylan2 593 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℝ)
3634, 18sylan2 593 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
3717absge0d 15390 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
3834, 37sylan2 593 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
39 eluzle 12784 . . . . 5 (𝑘 ∈ (ℤ‘1) → 1 ≤ 𝑘)
4039adantl 481 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ≤ 𝑘)
4131, 35, 36, 38, 40lemul1ad 12100 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · (abs‘((𝐺𝑋)‘𝑘))) ≤ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
42 absidm 15267 . . . . . 6 (((𝐺𝑋)‘𝑘) ∈ ℂ → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4317, 42syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4422fveq2d 6844 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (abs‘(abs‘((𝐺𝑋)‘𝑘))))
4523mullidd 11170 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4643, 44, 453eqtr4d 2774 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4734, 46sylan2 593 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4810oveq2d 7385 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))))
4919recnd 11180 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℂ)
5049mullidd 11170 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5148, 50eqtrd 2764 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5234, 51sylan2 593 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5341, 47, 523brtr4d 5134 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) ≤ (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)))
541, 3, 20, 24, 29, 30, 53cvgcmpce 15761 1 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  dom cdm 5631  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051   < clt 11186  cle 11187  cn 12164  0cn0 12420  cuz 12771  seqcseq 13944  cexp 14004  abscabs 15177  cli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-ico 13290  df-fz 13447  df-fzo 13594  df-fl 13732  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630
This theorem is referenced by:  radcnvlem3  26358  radcnvlt1  26361
  Copyright terms: Public domain W3C validator