MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem3 Structured version   Visualization version   GIF version

Theorem radcnvlem3 26322
Description: Lemma for radcnvlt1 26325, radcnvle 26327. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges at 𝑋. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvlem3 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12777 . 2 0 = (ℤ‘0)
2 0zd 12483 . 2 (𝜑 → 0 ∈ ℤ)
3 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
5 psergf.x . . . 4 (𝜑𝑋 ∈ ℂ)
63, 4, 5psergf 26319 . . 3 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
7 fvco3 6922 . . 3 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
86, 7sylan 580 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
96ffvelcdmda 7018 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
10 radcnvlem2.y . . 3 (𝜑𝑌 ∈ ℂ)
11 radcnvlem2.a . . 3 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
12 radcnvlem2.c . . 3 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
133, 4, 5, 10, 11, 12radcnvlem2 26321 . 2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
141, 2, 8, 9, 13abscvgcvg 15726 1 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5092  cmpt 5173  dom cdm 5619  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  0cn0 12384  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  radcnvle  26327
  Copyright terms: Public domain W3C validator